The application of a shock wave model to some industrial bubbly fluid flows
Shi, Zhusheng and Reese, Jason and Chandler, Howard (2000) The application of a shock wave model to some industrial bubbly fluid flows. International Journal of Engineering Science, 38. pp. 1617-1638. ISSN 0020-7225 (https://doi.org/10.1016/S0020-7225(99)00127-5)
Full text not available in this repository.Request a copyAbstract
An extended numerical model for bubbly oil/gas flows, using a more complete formulation than previously reported, is applied to five situations of industrial interest. Pressure waves propagating due to pressure differences caused by the sudden blocking of a pipeline carrying bubbly fluid, the bursting of a valve separating two regions of different pressures, and the opening and closing of a valve in a pipeline are simulated. In addition, the movement of an end plug to a bubbly flow pipeline when it fails is also modelled. In each case it is found that over-pressures, relative to the applied pressure difference, occur in the propagating pressure waves. The magnitude of the over-pressure increases with the applied pressure difference and appears close to, but not at, the boundary where the pressure difference is first applied. However, gradual application of the pressure difference reduces the maximum over-pressure. In the case of the sudden blockage of a pipeline, the over-pressure also varies with the initial flow velocity and has a greater magnitude than the predicted pressure rise calculated using only the fluid compressibility. Therefore, standard estimates for pressure rises in compressible fluids may be inappropriate for use in designing pipelines carrying bubbly fluids. Finally, the end plug simulations show that the plug accelerates quickly after the initial failure but then levels off, and that the final velocity of the end plug can be readily calculated using the numerical model.
ORCID iDs
Shi, Zhusheng, Reese, Jason ORCID: https://orcid.org/0000-0001-5188-1627 and Chandler, Howard;-
-
Item type: Article ID code: 36482 Dates: DateEvent1 September 2000PublishedSubjects: Technology > Mechanical engineering and machinery Department: Faculty of Engineering > Mechanical and Aerospace Engineering Depositing user: Pure Administrator Date deposited: 19 Dec 2011 12:45 Last modified: 11 Nov 2024 10:02 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/36482