Random walk with barycentric self-interaction
Comets, Francis and Menshikov, Mikhail V. and Volkov, Stanislav and Wade, Andrew R. (2011) Random walk with barycentric self-interaction. Journal of Statistical Physics, 143 (5). pp. 855-888. ISSN 0022-4715 (https://doi.org/10.1007/s10955-011-0218-7)
PDF.
Filename: CMVW.pdf
Preprint Download (484kB) |
Abstract
We study the asymptotic behaviour of a $d$-dimensional self-interacting random walk $X_n$ ($n = 1,2,...$) which is repelled or attracted by the centre of mass $G_n = n^{-1} \sum_{i=1}^n X_i$ of its previous trajectory. The walk's trajectory $(X_1,...,X_n)$ models a random polymer chain in either poor or good solvent. In addition to some natural regularity conditions, we assume that the walk has one-step mean drift directed either towards or away from its current centre of mass $G_n$ and of magnitude $\| X_n - G_n \|^{-\beta}$ for $\beta \geq 0$. When $\beta <1$ and the radial drift is outwards, we show that $X_n$ is transient with a limiting (random) direction and satisfies a super-diffusive law of large numbers: $n^{-1/(1+\beta)} X_n$ converges almost surely to some random vector. When $\beta \in (0,1)$ there is sub-ballistic rate of escape. For $\beta \geq 0$ we give almost-sure bounds on the norms $\|X_n\|$, which in the context of the polymer model reveal extended and collapsed phases. Analysis of the random walk, and in particular of $X_n - G_n$, leads to the study of real-valued time-inhomogeneous non-Markov processes $Z_n$ on $[0,\infty)$ with mean drifts at $x$ given approximately by $\rho x^{-\beta} - (x/n)$, where $\beta \geq 0$ and $\rho \in \R$. The study of such processes is a time-dependent variation on a classical problem of Lamperti; moreover, they arise naturally in the context of the distance of simple random walk on $\Z^d$ from its centre of mass, for which we also give an apparently new result. We give a recurrence classification and asymptotic theory for processes $Z_n$ just described, which enables us to deduce the complete recurrence classification (for any $\beta \geq 0$) of $X_n - G_n$ for our self-interacting walk.
-
-
Item type: Article ID code: 35958 Dates: DateEventJune 2011PublishedSubjects: Science > Physics Department: Faculty of Science > Mathematics and Statistics Depositing user: Pure Administrator Date deposited: 17 Nov 2011 09:57 Last modified: 14 Dec 2024 01:13 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/35958