The influence of poly (2-methoxyaniline-5-sulfonic acid) on the electrochemical and photochemical properties of a highly luminescent ruthenium complex

Dennany, Lynn and O'Reilly, Emmet J. and Innis, Peter C. and Wallace, Gordon G. and Forster, Robert J. (2008) The influence of poly (2-methoxyaniline-5-sulfonic acid) on the electrochemical and photochemical properties of a highly luminescent ruthenium complex. Electrochimica Acta, 53 (13). pp. 4599-4605. ISSN 0013-4686 (https://doi.org/10.1016/j.electacta.2007.11.025)

[thumbnail of The influence of poly (2-methoxyaniline-5-sulfonic acid) on the electrochemical and photochemical properties of a highly luminescent ruthenium complex]
Preview
PDF. Filename: Electrochimica_Acta_2008.pdf
Preprint

Download (502kB)| Preview

Abstract

Immobilisation of a luminescent material on an electrode surface is well known to substantially modulate its photophysical and electrochemical properties. Here a positively charged ruthenium metal complex ([Ru(bpy)(3)](2+)) is immobilised on all electrode surface by ion paring with a sulfonated conducting polymer poly(2-methoxyaniline-5-sulfonic acid), (PMAS). Significantly, our study reveals that the electron transport between the ruthenium metal centres can be greatly enhanced due to the interaction with the conducting polymer when both are surface confined. Charge transfer diffusion rates in the present system are an order of magnitude faster than those found where the metal centre is immobilised within a non-conducting polymeric matrix. Electron transport appears to be mediated through the PMAS conjugated structure, contrasting with the electron hopping process typically observed in non-conducting metallopolymers. This increased regeneration rate causes the ruthenium-based electrochemiluminescence (ECL) efficiency to be increased. The impact of these observations on the ECL detection of low concentrations of disease biomarkers is discussed. (c) 2007 Published by Elsevier Ltd.

ORCID iDs

Dennany, Lynn ORCID logoORCID: https://orcid.org/0000-0002-5481-1066, O'Reilly, Emmet J., Innis, Peter C., Wallace, Gordon G. and Forster, Robert J.;