A simple model of cortical dynamics explains variability and state dependence of sensory responses in urethane-anesthetized auditory cortex

Curto, Carina and Sakata, Shuzo and Marguet, Stephan and Itskov, Vladimir and Harris, Kenneth D (2009) A simple model of cortical dynamics explains variability and state dependence of sensory responses in urethane-anesthetized auditory cortex. Journal of Neuroscience, 29 (34). pp. 10600-10612. (https://doi.org/10.1523/JNEUROSCI.2053-09.2009)

Full text not available in this repository.Request a copy

Abstract

The responses of neocortical cells to sensory stimuli are variable and state dependent. It has been hypothesized that intrinsic cortical dynamics play an important role in trial-to-trial variability; the precise nature of this dependence, however, is poorly understood. We show here that in auditory cortex of urethane-anesthetized rats, population responses to click stimuli can be quantitatively predicted on a trial-by-trial basis by a simple dynamical system model estimated from spontaneous activity immediately preceding stimulus presentation. Changes in cortical state correspond consistently to changes in model dynamics, reflecting a nonlinear, self-exciting system in synchronized states and an approximately linear system in desynchronized states. We propose that the complex and state-dependent pattern of trial-to-trial variability can be explained by a simple principle: sensory responses are shaped by the same intrinsic dynamics that govern ongoing spontaneous activity.

ORCID iDs

Curto, Carina, Sakata, Shuzo ORCID logoORCID: https://orcid.org/0000-0001-6796-411X, Marguet, Stephan, Itskov, Vladimir and Harris, Kenneth D;