The agreement of Breit-Pauli and Dirac R-matrix collision strengths for iron peak elements: an Fe14+ case study
Berrington, K.A. and Ballance, C.P. and Griffin, D.C. and Badnell, N.R. (2005) The agreement of Breit-Pauli and Dirac R-matrix collision strengths for iron peak elements: an Fe14+ case study. Journal of Physics B: Atomic, Molecular and Optical Physics, 38 (11). pp. 1667-1678. ISSN 0953-4075 (https://doi.org/10.1088/0953-4075/38/11/008)
Full text not available in this repository.Request a copyAbstract
In calculating collision strengths and excitation rates for electron impact on moderately ionized iron peak elements, one might question whether the Breit-Pauli R-matrix method is sufficiently accurate as compared with the Dirac R-matrix method. We test this for Fe14+ by removing as far as possible any variation in algorithmic features, such as the energy mesh and target state expansion, as opposed to genuine differences between the two approaches. We find the average difference between the Breit-Pauli and Dirac R-matrix effective collision strengths is only 6%, which confirms the hypothesis that if one gets the Dirac and Breit-Pauli target states close, and resolves the resonances adequately (we use up to 384101 points), then the Dirac and Breit-Pauli collision strengths are in good agreement. We finally tabulate the best converged effective collision strengths for T = 10(5)-10(7) K for all transitions involving the lowest 10 levels of Fe14+.
ORCID iDs
Berrington, K.A., Ballance, C.P., Griffin, D.C. and Badnell, N.R. ORCID: https://orcid.org/0000-0001-7418-7996;-
-
Item type: Article ID code: 31190 Dates: DateEvent14 June 2005PublishedSubjects: Science > Physics Department: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 13 Jul 2011 08:55 Last modified: 04 Jan 2025 18:54 URI: https://strathprints.strath.ac.uk/id/eprint/31190