Development of small-size tubular-flow continuous reactors for the analysis of operational stability of enzymes in low-water systems
Pirozzi, D. and Halling, P.J. (2001) Development of small-size tubular-flow continuous reactors for the analysis of operational stability of enzymes in low-water systems. Biotechnology and Bioengineering, 72 (2). pp. 244-248. ISSN 0006-3592 (http://dx.doi.org/10.1002/1097-0290(20000120)72:2<...)
Full text not available in this repository.Request a copyAbstract
A very small-scale continuous flow reactor has been designed for use with enzymes in organic media, particularly for operational stability studies. It is constructed from fairly inexpensive components, and typically uses 5 mg of catalyst and flow rates of 1 to 5 mL/h, so only small quantities of feedstock need to be handled. The design allows control of the thermodynamic water activity of the feed, and works with temperatures up to at least 80 degreesC. The reactor has been operated with both nonpolar (octane) and polar (4-methyl- pentan-2-one) solvents, and with the more viscous solvent-free reactant mixture. It has been applied to studies of the operational stability of lipases from Chromobacterium viscosum (lyophilized powder or polypropylene-adsorbed) and Rhizomucor miehei(Lipozyme) in different experimental conditions. Transesterification of geraniol and ethylcaproate has been adopted as a model transformation.
ORCID iDs
Pirozzi, D. and Halling, P.J. ORCID: https://orcid.org/0000-0001-5077-4088;-
-
Item type: Article ID code: 308 Dates: DateEvent20 January 2001PublishedSubjects: Science > Chemistry Department: Faculty of Science > Pure and Applied Chemistry Depositing user: Users 16 not found. Date deposited: 13 Mar 2006 Last modified: 02 Jan 2025 22:44 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/308