Modelling creep and rate effects in structured anisotropic soft clays
Grimstad, Gustav and Degado, SA and Nordal, S and Karstunen, Minna (2010) Modelling creep and rate effects in structured anisotropic soft clays. Acta Geotechnica, 5 (1). pp. 69-81. ISSN 1861-1125 (https://doi.org/10.1007/s11440-010-0119-y)
Full text not available in this repository.Request a copyAbstract
In simulations of undrained triaxial tests, most soil models fail to capture the effect of post peak strain rate variation. This is due to the fact that no “swelling” is allowed for the viscoplastic volume strain. Imposing such restriction implies that dilative behavior cannot be modeled. Therefore, a model incorporating creep has been formulated using the so-called time resistance concept that uses a single creep parameter determined from an incremental oedometer test. The key feature of the proposed model is the introduction of the time resistance concept on the plastic multiplier rather than on the volumetric viscoplastic strain. This allows the viscoplastic volume strain to be either positive or negative depending on whether the state of the soil is on the “wet” or “dry” side of critical state line. The proposed model is based on an existing elastoplastic model for structured soft clay (S-CLAY1S). The paper gives a description of the constitutive model and the numerical scheme used in the implementation of the model. Capabilities of the model are illustrated with simulations of oedometer and triaxial tests. Results from such analyses show that the model is able to capture essential features of soft clay behavior.
-
-
Item type: Article ID code: 29700 Dates: DateEventApril 2010PublishedSubjects: Technology > Engineering (General). Civil engineering (General) Department: Faculty of Engineering > Civil and Environmental Engineering Depositing user: Pure Administrator Date deposited: 05 Apr 2011 09:25 Last modified: 11 Nov 2024 09:41 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/29700