Light levitated geostationary cylindrical orbits are feasible
Baig, S. and McInnes, C.R. (2010) Light levitated geostationary cylindrical orbits are feasible. Journal of Guidance, Control and Dynamics, 33 (3). pp. 782-793. ISSN 1533-3884 (https://doi.org/10.2514/1.46681)
Preview |
Text.
Filename: strathprints018865.pdf
Accepted Author Manuscript Download (358kB)| Preview |
Abstract
This paper discusses a new family of non-Keplerian orbits for solar sail spacecraft displaced above or below the Earth's equatorial plane. The work aims to prove the assertion in the literature that displaced geostationary orbits exist, possibly to increase the number of available slots for geostationary communications satellites. The existence of displaced non-Keplerian periodic orbits is ¯rst shown analytically by linearization of the solar sail dynamics around a geostationary point. The full displaced periodic solution of the non-linear equations of motion is then obtained using a Hermite-Simpson collocation method with inequality path constraints. The initial guess to the collocation method is given by the linearized solution and the inequality path constraints are enforced as a box around the linearized solution. The linear and nonlinear displaced periodic orbits are also obtained for the worst-case Sun-sail orientation at the solstices. Near-term and high-performance sails can be displaced between 10 km and 25 km above the Earth's equatorial plane during the summer solstice, while a perforated sail can be displaced above the usual station-keeping box (75 £ 75 km) of nominal geostationary satellites. Light-levitated orbit applications to Space Solar Power are also considered.
-
-
Item type: Article ID code: 18865 Dates: DateEventMay 2010PublishedSubjects: Technology > Mechanical engineering and machinery
Technology > Motor vehicles. Aeronautics. AstronauticsDepartment: Faculty of Engineering > Mechanical and Aerospace Engineering Depositing user: Ms Katrina May Date deposited: 26 May 2010 08:51 Last modified: 17 Nov 2024 01:05 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/18865