Interpolation and scattered data fitting on manifolds using projected Powell–Sabin splines

Davydov, O. and Schumaker, L.L. (2008) Interpolation and scattered data fitting on manifolds using projected Powell–Sabin splines. IMA Journal of Numerical Analysis, 28 (4). pp. 785-805. ISSN 0272-4979 (https://doi.org/10.1093/imanum/drm033)

[thumbnail of man_theory.pdf]
Preview
PDF. Filename: man_theory.pdf
Accepted Author Manuscript

Download (251kB)| Preview

Abstract

We present methods for either interpolating data or for fitting scattered data on a two-dimensional smooth manifold. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of a family of charts {(Uξ , ξ)}ξ∈ satisfying certain conditions of smooth dependence on ξ. If is a C2-manifold embedded into R3, then projections into tangent planes can be employed. The data fitting method is a two-stage method. We prove that the resulting function on the manifold is continuously differentiable, and establish error bounds for both methods for the case when the data are generated by a smooth function.