The adapted solution and comparison theorem for backward stochastic differential equations with Poisson jumps and applications
Yin, Juliang and Mao, Xuerong, NSF of Guangdong Province (Funder) (2008) The adapted solution and comparison theorem for backward stochastic differential equations with Poisson jumps and applications. Journal of Mathematical Analysis and Applications, 346 (2). pp. 345-358. ISSN 0022-247X (https://doi.org/10.1016/j.jmaa.2008.05.072)
Preview |
PDF.
Filename: 165redactYin_Mao_JMAA.pdf
Accepted Author Manuscript Download (194kB)| Preview |
Abstract
This paper deals with a class of backward stochastic differential equations with Poisson jumps and with random terminal times. We prove the existence and uniqueness result of adapted solution for such a BSDE under the assumption of non-Lipschitzian coefficient. We also derive two comparison theorems by applying a general Girsanov theorem andthe linearized technique on the coefficient. By these we first show the existence and uniqueness of minimal solution for one-dimensional BSDE with jumps when its coefficient is continuous and has a linear growth. Then we give a general Feynman-Kac formula for a class of parabolic types of second-order partial differential and integral equations (PDIEs) by using the solution of corresponding BSDE with jumps. Finally, we exploit above Feynman-Kac formula and related comparison theorem to provide a probabilistic formula for the viscosity solution of a quasi-linear PDIE of parabolic type.
ORCID iDs
Yin, Juliang and Mao, Xuerong ORCID: https://orcid.org/0000-0002-6768-9864;-
-
Item type: Article ID code: 13866 Dates: DateEvent15 October 2008PublishedSubjects: Science > Mathematics Department: Faculty of Science > Mathematics and Statistics Depositing user: Mrs Carolynne Westwood Date deposited: 17 Dec 2009 15:24 Last modified: 11 Nov 2024 09:06 URI: https://strathprints.strath.ac.uk/id/eprint/13866