Bifurcation analysis of the twist-Freedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions
Da Costa, Fernando P. and Gartland Jr., Eugene C. and Grinfeld, Michael and Pinto, Joao T. (2009) Bifurcation analysis of the twist-Freedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions. European Journal of Applied Mathematics, 20 (3). pp. 269-287. ISSN 0956-7925 (https://doi.org/10.1017/SO956792509007827)
Preview |
Text.
Filename: strathprints013690.pdf
Accepted Author Manuscript Download (341kB)| Preview |
Abstract
Motivated by a recent investigation of Millar and McKay [Mol. Cryst. Liq. Cryst., 435, 277/[937]-286/[946] (2005)], we study the magnetic field twist-Fr´eedericksz transition for a nematic liquid crystal of positive diamagnetic anisotropy with strong anchoring and pre- twist boundary conditions. Despite the pre-twist, the system still possesses Z2 symmetry and a symmetry-breaking pitchfork bifurcation, which occurs at a critical magnetic-field strength that, as we prove, is above the threshold for the classical twist-Fr´eedericksz tran- sition (which has no pre-twist). It was observed numerically by Millar and McKay that this instability occurs precisely at the point at which the ground-state solution loses its monotonicity (with respect to the position coordinate across the cell gap). We explain this surprising observation using a rigorous phase-space analysis.
-
-
Item type: Article ID code: 13690 Dates: DateEventJune 2009PublishedSubjects: Science > Mathematics Department: Faculty of Science > Mathematics and Statistics Depositing user: Mrs Carolynne Westwood Date deposited: 13 Jan 2010 11:29 Last modified: 03 Jan 2025 23:29 URI: https://strathprints.strath.ac.uk/id/eprint/13690