Weighted density-functional theory for simple fluids; prewetting of a Lennard-Jones fluid
Sweatman, M.B. (2001) Weighted density-functional theory for simple fluids; prewetting of a Lennard-Jones fluid. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 65 (1). 011102. ISSN 2470-0053 (http://dx.doi.org/10.1103/PhysRevE.65.011102)
Full text not available in this repository.Request a copyAbstract
The prewetting of a Lennard-Jones fluid is studied using weighted density-functional theory. The intrinsic Helmholtz free-energy functional is separated into repulsive and attractive contributions. An accurate functional for hard spheres is used for the repulsive functional and a weighted density-functional method is used for the attractive part. The results for this theory are compared against mean-field density-functional theory, the theory of Velasco and Tarazona [E. Velasco and P. Tarazona, J. Chem. Phys. 91, 7916 (1989)] and grand canonical ensemble simulation results. The results demonstrate that the weighted density functional for attractive forces may offer a significant increase in accuracy over the other theories. The density-functional and simulation results also indicate that a previous estimate of the wetting temperature for a model of the interaction of argon with solid carbon dioxide, obtained from simulations [J. E. Finn and P. A. Monson, Phys. Rev. A, 39, 6402 (1989)], is incorrect. The weighted density-functional method indicates that triple-point prewetting is observed for this model potential.
-
-
Item type: Article ID code: 13480 Dates: DateEventJanuary 2001PublishedSubjects: Technology > Engineering (General). Civil engineering (General)
Science > PhysicsDepartment: Faculty of Engineering > Chemical and Process Engineering Depositing user: Dr Martin Sweatman Date deposited: 18 Nov 2009 15:09 Last modified: 03 Jan 2025 19:45 URI: https://strathprints.strath.ac.uk/id/eprint/13480