Limit theory for the random on-line nearest-neighbour graph
Penrose, Mathew D. and Wade, Andrew R. (2007) Limit theory for the random on-line nearest-neighbour graph. Random Structures and Algorithms, 32 (2). pp. 125-156. ISSN 1042-9832 (https://doi.org/10.1002/rsa.20185)
Preview |
Text.
Filename: strathprints013396.pdf
Accepted Author Manuscript Download (519kB)| Preview |
Abstract
In the on-line nearest-neighbour graph (ONG), each point after the first in a sequence of points in Rd is joined by an edge to its nearest neighbour amongst those points that precede it in the sequence. We study the large-sample asymptotic behaviour of the total power-weighted length of the ONG on uniform random points in (0, 1)d. In particular, for d = 1 and weight exponent > 1/2, the limiting distribution of the centred total weight is characterized by a distributional fixed point equation. As an ancillary result, we give exact expressions for the expectation and variance of the standard nearest-neighbour (directed) graph on uniform random points in the unit interval.
-
-
Item type: Article ID code: 13396 Dates: DateEvent13 August 2007PublishedSubjects: Science > Mathematics > Probabilities. Mathematical statistics
Science > MathematicsDepartment: Faculty of Science > Mathematics and Statistics Depositing user: Mrs Carolynne Westwood Date deposited: 12 Nov 2009 14:14 Last modified: 12 Dec 2024 02:20 URI: https://strathprints.strath.ac.uk/id/eprint/13396