Acanthamoeba alternative oxidase genes : identification, characterisation and potential as antimicrobial targets
Henriquez, Fiona L. and McBride, James and Campbell, Sara J. and Ramos, Tania and Ingram, Paul R. and Roberts, F. and Tinney, Sinead and Roberts, C.W. (2009) Acanthamoeba alternative oxidase genes : identification, characterisation and potential as antimicrobial targets. International Journal for Parasitology, 39 (13). pp. 1417-1424. ISSN 0020-7519 (https://doi.org/10.1016/j.ijpara.2009.04.011)
Full text not available in this repository.Request a copyAbstract
Alternative oxidase (AOX) is a mitochondrial protein that acts as an alternative terminal oxidase to the conventional cytochrome oxidases. It is present in certain prokaryotes, plants, fungi and some protozoa but absent in mammals. AOX activity has previously been described in Acanthamoeba, although no genetic evidence has been reported. Herein, two AOX (AcAOX) genes designated isoforms A and B, were obtained from Acanthamoeba castellanii by a combination of degenerate PCR from cDNA and a series of 5′ and 3′ rapid amplification of cDNA ends. The corresponding genomic sequences of these AcAOXs were also obtained. Each gene spans six exons over a region of 1607 and 1619 bp, respectively. Isoforms A and B have open reading frames of 1113 and 1125 bp, respectively. Each encodes a protein with a predicted molecular weight of 42 kDa. Each AcAOX protein has a predicted cleavable mitochondrial targeting sequence. The full-length AcAOX is functionally active as it complements hemL-deficient Escherichia coli and inhibited by the inhibitor of AOX, salicylhydroxamic acid (SHAM). SHAM is effective against A. castellanii and Acanthamoeba polyphaga only when used in conjunction with antimycin A, an inhibitor of the conventional cytochrome respiratory pathway. Transcripts for AcAOX are increased during the encystment process, indicating a possible role for alternative respiration during stress.
ORCID iDs
Henriquez, Fiona L., McBride, James, Campbell, Sara J., Ramos, Tania, Ingram, Paul R., Roberts, F., Tinney, Sinead and Roberts, C.W. ORCID: https://orcid.org/0000-0002-0653-835X;-
-
Item type: Article ID code: 13156 Dates: DateEventNovember 2009PublishedSubjects: Medicine > Pharmacy and materia medica
Medicine > Therapeutics. PharmacologyDepartment: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences > Immunology
Faculty of Science > Mathematics and StatisticsDepositing user: Ms Ann Barker-Myles Date deposited: 06 Oct 2009 10:51 Last modified: 11 Nov 2024 09:12 URI: https://strathprints.strath.ac.uk/id/eprint/13156