Acute ∆9-tetrahydrocannabinol-induced deficits in reversal learning: neural correlates of affective inflexibility
Egerton, A.D. and Brett, R.R. and Pratt, J.A. (2005) Acute ∆9-tetrahydrocannabinol-induced deficits in reversal learning: neural correlates of affective inflexibility. Neuropsychopharmacology, 30. pp. 1895-1905. ISSN 1470-634X (http://dx.doi.org/10.1038/sj.npp.1300715)
Full text not available in this repository.Request a copyAbstract
Despite concerns surrounding the possible adverse effects of marijuana on complex cognitive function, the processes contributing to the observed cognitive deficits are unclear, as are the causal relationships between these impairments and marijuana exposure. In particular, marijuana-related deficits in cognitive flexibility may affect the social functioning of the individual and may contribute to continued marijuana use. We therefore examined the ability of rats to perform affective and attentional shifts following acute administration of D9-tetrahydrocannabinol (THC), the primary psychoactive marijuana constituent. Administration of 1 mg/kg THC produced marked impairments in the ability to reverse previously relevant associations between stimulus features and reward presentation, while the ability to transfer attentional set between dimensional stimulus properties was unaffected. Concurrent in situ hybridization analysis of regional c-fos and ngfi-b expression highlighted areas of the prefrontal cortex and striatum that were recruited in response to both THC administration and task performance. Furthermore, the alterations in mRNA expression in the orbitofrontal cortex and striatum were associated with the ability to perform the reversal discriminations. These findings suggest that marijuana use may produce inelasticity in updating affective associations between stimuli and reinforcement value, and that this effect may arise through dysregulation of orbitofrontal and striatal circuitry
-
-
Item type: Article ID code: 10047 Dates: DateEvent6 April 2005PublishedSubjects: Medicine > Pharmacy and materia medica Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences > Physiology and PharmacologyDepositing user: Strathprints Administrator Date deposited: 24 Jun 2011 12:56 Last modified: 02 Jan 2025 04:10 URI: https://strathprints.strath.ac.uk/id/eprint/10047