Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

Creating advanced multifunctional biosensors with surface enzymatic transformations

Lee, H.J. and Wark, A.W. and Corn, R.M. (2006) Creating advanced multifunctional biosensors with surface enzymatic transformations. Langmuir, 22 (12). pp. 5241-5250. ISSN 0743-7463

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper summarizes our recent work on the coupling of surface enzyme chemistry and bioaffinity interactions on biopolymer microarrays for the creation of multiplexed biosensors with enhanced selectivity and sensitivity. The surface sensitive techniques of surface plasmon resonance imaging (SPRI) and surface plasmon fluorescence spectroscopy (SPFS) are used to detect the surface enzymatic transformations in real time. Three specific examples of novel coupled surface bioaffinity/surface enzymatic processes are demonstrated: (i) a surface enzymatic amplification method utilizing the enzyme ribonuclease H (RNase H) in conjunction with RNA microarrays that permits the ultrasensitive direct detection of genomic DNA at a concentration of 1 fM without labeling or PCR amplification, (ii) the use of RNADNA ligation chemistry to create renewable RNA microarrays from single stranded DNA microarrays, and (iii) the application of T7RNApolymerase for the on-chip replication ofRNAfrom double strandedDNAmicroarray elements. In addition, a simple yet powerful theoretical framework that includes the contributions of both enzyme adsorption and surface enzyme kinetics is used to quantitate surface enzyme reactivity. This model is successfully applied to SPRI and SPFS measurements of surface hydrolysis reactions of RNase H and Exonuclease III (Exo III) on oligonucleotide microarrays