Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Wave-current interactions in marine current turbines

Barltrop, N. and Grant, A.D. and Varyani, K.S. and Pham, X.P. (2006) Wave-current interactions in marine current turbines. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 220 (4). pp. 195-203. ISSN 1475-0902

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The influence of waves on the dynamic properties of bending moments at the root of blades of tidal stream vertical-axis rotors is reported. Blade element-momentum theory for wind turbines is combined with linear wave theory and used to analyze this influence. Experiments were carried out with a 350 mm diameter rotor to validate the simulation and the comparison shows the ability of the theoretical approach to predict the blade root bending moments. It can be concluded that, in steep waves, linear theory underestimates the dynamic behaviour of bending moments. However, in long waves, linear theory works well. Bending moments at roots of rotor blades fluctuate with significant amplitudes (as much as 50 per cent of mean value for out-of-plane bending moment and 100 per cent of mean value for in-plane bending moment), which will be important for design of tidal stream rotors.