Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Investigation into wave-current interactions in marine current turbines

Barltrop, N. and Varyani, K.S. and Grant, A.D. and Clelland, D. and Pham, X.P. (2007) Investigation into wave-current interactions in marine current turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221 (2). pp. 233-242. ISSN 0957-6509

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The paper looks at the use of blade element-momentum theory for predicting the torque and thrust on a marine current turbine and the results of wave tank tests using a 400 mm-diameter rotor model. To include the effects of waves, linear wave theory particle velocities and accelerations were integrated into the mathematical model. Comparison with test data shows a good agreement which implies that the theory can be effective in analysing the wave-current interactions in marine current turbines. The paper also carried out parametric studies into related parameters, which include wave height, wave frequency, and tip-speed ratio. The interaction of waves with the current may increase or decrease the torque and hence power output of the turbine. The paper also explains the selection and manufacture of the rotor and the experimental setup.