A sigmoidal model for superplastic deformation

Pan, W. and Krohn, K. and Leen, S.B. and Hyde, T.H. and Walloe, S. (2005) A sigmoidal model for superplastic deformation. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 219 (3). pp. 149-162. ISSN 1464-4207 (https://doi.org/10.1243/146442005X10355)

Full text not available in this repository.Request a copy

Abstract

A new phenomenological model, designed to capture the sigmoidal nature of stress dependency on strain rate for superplastic deformation, is presented. The model is developed for the Ti-6Al-2Sn-4Zr-2Mo alloy using data obtained under controlled strain-rate tensile tests spanning a range of strain rates and temperatures, from 930 to 980 °C. The sigmoidal model performance is compared with that of a more conventional double-power law, strain, and strain-rate hardening model using time-dependent finite element and theoretical analyses. The primary intended application of the sigmoidal model is for more accurate simulation of the effects of strain-rate variation within test specimens and sheet during superplastic deformation. Analysis of this variation within two designs of tensile test specimens is presented to illustrate this aspect.

Sorry the service is unavailable at the moment. Please try again later.