Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Incorporation of viscoelastic loss into the plane wave expansion approach to modelling composite transducers

Orr, L. and Mulholland, A.J. and O'Leary, R.L. and Hayward, G. (2006) Incorporation of viscoelastic loss into the plane wave expansion approach to modelling composite transducers. In: 2000 IEEE International Ultrasonics Symposium, 2000-10-22 - 2000-10-25, Caribe Hilton.

[img]
Preview
PDF (orr_2006_ProcIEEEUltras22.pdf)
orr_2006_ProcIEEEUltras22.pdf - Accepted Author Manuscript

Download (280kB) | Preview

Abstract

The plane wave expansion (PWE) method has been proposed as a theoretical model for periodic composite ultrasonic transducers. This paper extends previous work by importantly including viscoelastic loss in the material parameters. Some of the issues with model formulation, such as ill-conditioning in the large matrices, have been addressed through parameter scaling and Tikhonov regularisation. Identification of each mode of vibration has been carried out by visualising the spatial and temporal profiles of the displacement, electrical potential and Poynting vector. A comparison between the theoretical predictions and experimental data from a piezoelectric composite device is presented. The effect that the elastic properties of the passive phase have on device performance is also investigated. It is found that high shear attenuation in the passive phase gives rise to a large frequency stop band gap around the fundamental thickness mode.