Numerical studies of collinear laser-assisted injection from a foil for plasma wakefield accelerators

Wilson, T.C. and Farmer, J. and Pukhov, A. and Sheng, Z.-M. and Hidding, B. (2024) Numerical studies of collinear laser-assisted injection from a foil for plasma wakefield accelerators. Physical Review Accelerators and Beams, 27 (7). 071301. ISSN 2469-9888 (https://doi.org/10.1103/PhysRevAccelBeams.27.07130...)

[thumbnail of Wilson-etal-PRAB-2024-Numerical-studies-of-collinear-laser-assisted-injection]
Preview
Text. Filename: Wilson-etal-PRAB-2024-Numerical-studies-of-collinear-laser-assisted-injection.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

Abstract

We present a laser-assisted electron injection scheme for beam-driven plasma wakefield acceleration. The laser is collinear with the driver and triggers the injection of hot electrons into the plasma wake by interaction with a thin solid target. We present a baseline case using the AWAKE Run 2 parameters and then perform variations on key parameters to explore the scheme. It is found that the trapped witness electron charge may be tuned by altering laser parameters, with a strong dependence on the phase of the wake upon injection. Normalized emittance settles at the order of micrometres and varies with witness charge. The scheme is robust to misalignment, with a 1/10th plasma skin-depth offset (20  μ⁢m for the AWAKE case) having a negligible effect on the final beam. The final beam quality is better than similar existing schemes, and several avenues for further optimization are indicated. The constraints on the AWAKE experiment are very specific, but the general principles of this mechanism can be applied to future beam-driven plasma wakefield accelerator experiments.

ORCID iDs

Wilson, T.C. ORCID logoORCID: https://orcid.org/0000-0002-6140-7045, Farmer, J., Pukhov, A., Sheng, Z.-M. ORCID logoORCID: https://orcid.org/0000-0002-8823-9993 and Hidding, B. ORCID logoORCID: https://orcid.org/0000-0002-5827-0041;