Robotic welding techniques in marine structures and production processes : a systematic literature review

Wahidi, Sufian Imam and Oterkus, Selda and Oterkus, Erkan (2024) Robotic welding techniques in marine structures and production processes : a systematic literature review. Marine Structures, 95. 103608. ISSN 0951-8339 (https://doi.org/10.1016/j.marstruc.2024.103608)

[thumbnail of Wahidi-etal-MS-2024-Robotic-welding-techniques-in-marine-structures-and-production]
Preview
Text. Filename: Wahidi-etal-MS-2024-Robotic-welding-techniques-in-marine-structures-and-production.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial 4.0 logo

Download (3MB)| Preview

Abstract

Robotic welding has garnered significant attention in the maritime industry for its potential to enhance marine structure quality and optimize production processes. This systematic literature review aims to provide a comprehensive overview of the current state of research in robotic welding for marine applications, encompassing marine structures and production processes, following the PRISMA statement and guidelines. The review encompasses various facets, including welding techniques, processed materials, types of robotic welding, technological advancements, potential advantages, and challenges encountered when implementing robotic welding systems in the maritime sector. The results spotlight the pivotal role of gas metal arc welding (GMAW) in propelling robotic welding technology forward, while wire arc additive manufacturing (WAAM) has experienced a notable surge in popularity, signifying its potential to catalyze significant changes in maritime manufacturing processes. Notably, the predominant use of robotic welding centers on carbon steel materials. However, ongoing advancements indicate a growing diversification, with the incorporation of advanced materials like high-strength alloys on the horizon. Additionally, the utilization of 6-axis robot welding in conjunction with fully autonomous systems has emerged as a versatile and potent instrument that has revolutionized welding methodologies across various maritime research domains. Robotic welding provides a number of advantages, such as increased productivity, higher quality, adherence to industry standards, adaptation to confined and dangerous locations, and facilitation of innovative construction techniques. Nevertheless, adoption of this cutting-edge technology is not without challenges. By synthesizing the results from several investigations, this research study offers useful insights into the current knowledge gaps, emerging trends, and future prospects for the growth of robotic welding in maritime applications.