Space object identification and classification from hyperspectral material analysis

Vasile, Massimiliano and Walker, Lewis and Campbell, Andrew and Marto, Simão and Murray, Paul and Marshall, Stephen and Savitski, Vasili (2024) Space object identification and classification from hyperspectral material analysis. Scientific Reports, 14. 1570. ISSN 2045-2322 (

[thumbnail of Vasile-etal-SR-2024-Space-object-identification-and-classification-from-hyperspectral-material-analysis]
Text. Filename: Vasile-etal-SR-2024-Space-object-identification-and-classification-from-hyperspectral-material-analysis.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (9MB)| Preview


This paper presents a data processing pipeline designed to extract information from the hyperspectral signature of unknown space objects. The methodology proposed in this paper determines the material composition of space objects from single pixel images. Two techniques are used for material identification and classification: one based on machine learning and the other based on a least square match with a library of known spectra. From this information, a supervised machine learning algorithm is used to classify the object into one of several categories based on the detection of materials on the object. The behaviour of the material classification methods is investigated under non-ideal circumstances, to determine the effect of weathered materials, and the behaviour when the training library is missing a material that is present in the object being observed. Finally the paper will present some preliminary results on the identification and classification of space objects.