How do engineers do that?—An interactive introduction to the engineering design process for secondary age school pupils

McNair, Sophie A M and Hayward, Samantha J (2023) How do engineers do that?—An interactive introduction to the engineering design process for secondary age school pupils. Physics Education, 58 (4). 045002. ISSN 1361-6552 (https://doi.org/10.1088/1361-6552/accef3)

[thumbnail of McNair-Hayward-PE-2023-How-do-engineers-do-that-an-interactive-introduction]
Preview
Text. Filename: McNair_Hayward_PE_2023_How_do_engineers_do_that_an_interactive_introduction.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (5MB)| Preview

Abstract

It is widely accepted that the United Kingdom (UK) needs more engineers and professionals with skills in science, technology, engineering and maths (STEM) to benefit the economy and keep up with technological change and innovation. However, the true nature of engineering and STEM careers is often misunderstood, with secondary school pupils unable to identify where engineering benefits their everyday lives. This suggests that the societal impacts of engineering are not well-defined within secondary education, causing a lack of diversity in pupils pursuing STEM careers. The authors have developed an activity that demonstrates the true problem-solving nature of engineering, and the numerous ways in which these skills can be applied to everyday life. While most practical ‘design, build and test’ (DBT) exercises aim to foster student engagement with STEM, this activity also emphasises how the engineering design process is a crucial tool for reaching an optimum solution. Pupils work in teams generating ideas and learning from failure, gaining a greater appreciation of how engineers work and the truly exciting nature of engineering. They achieve this by using the engineering design process to help them complete a DBT activity involving building a bridge from limited materials and testing how much weight it can hold. To ensure all pupils have the same opportunities for engagement, the method of delivery, activity design, key learning outcomes, discussion points, and activity relevance have been carefully considered for pupils across a range of age groups, backgrounds, and subject interests. This makes the designed activity ideal for integration into various subject lessons in secondary school classrooms to expose pupils to engineering. The authors have successfully delivered this activity during numerous outreach schemes for pupils visiting the University of Bath, especially noting pupils’ engagement and enthusiasm.