Picture of classic books on shelf

Literary linguistics: Open Access research in English language

Strathprints makes available Open Access scholarly outputs by English Studies at Strathclyde. Particular research specialisms include literary linguistics, the study of literary texts using techniques drawn from linguistics and cognitive science.

The team also demonstrates research expertise in Renaissance studies, researching Renaissance literature, the history of ideas and language and cultural history. English hosts the Centre for Literature, Culture & Place which explores literature and its relationships with geography, space, landscape, travel, architecture, and the environment.

Explore all Strathclyde Open Access research...

Optimisation of multiple responses using a fuzzy rule-based inference system

Lu, D. and Antony, J. (2002) Optimisation of multiple responses using a fuzzy rule-based inference system. International Journal of Production Research, 40 (7). pp. 1613-1625. ISSN 0020-7543

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The optimization of multiple responses (or performance characteristics) has received increasing attention over the last few years in many manufacturing organizations. Many Taguchi practitioners have employed past experience and engineering knowledge or judgement when dealing with multiple responses. This approach brings an element of uncertainty to the decision-making process and therefore is not recommended for optimization of multiple responses. The approach presented in this paper takes advantage of both the Taguchi method and a fuzzy-rule based inference system, which forms a robust and practical methodology in tackling multiple response optimization problems. The paper also presents a case study to illustrate the potential of this powerful integrated approach for tackling multiple response optimization problems. The variance analysis is also an integral part of the study, which identifies the most critical and statistically significant parameters.