Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Optimisation of multiple responses using a fuzzy rule-based inference system

Lu, D. and Antony, J. (2002) Optimisation of multiple responses using a fuzzy rule-based inference system. International Journal of Production Research, 40 (7). pp. 1613-1625. ISSN 0020-7543

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The optimization of multiple responses (or performance characteristics) has received increasing attention over the last few years in many manufacturing organizations. Many Taguchi practitioners have employed past experience and engineering knowledge or judgement when dealing with multiple responses. This approach brings an element of uncertainty to the decision-making process and therefore is not recommended for optimization of multiple responses. The approach presented in this paper takes advantage of both the Taguchi method and a fuzzy-rule based inference system, which forms a robust and practical methodology in tackling multiple response optimization problems. The paper also presents a case study to illustrate the potential of this powerful integrated approach for tackling multiple response optimization problems. The variance analysis is also an integral part of the study, which identifies the most critical and statistically significant parameters.