Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

The synthesis, X-ray structures and CVD studies of some group 11 complexes of iminobis(diisopropylphosphine selenides) and their use in the deposition of I/III/VI photovoltaic materials

Afzaal, M. and Crouch, D.J. and O'Brien, P. and Raftery, J. and Skabara, P.J. and White, A.J.P. and Williams, D.J. (2004) The synthesis, X-ray structures and CVD studies of some group 11 complexes of iminobis(diisopropylphosphine selenides) and their use in the deposition of I/III/VI photovoltaic materials. Journal of Materials Chemistry, 14 (2). pp. 233-237. ISSN 0959-9428

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Reaction of NH((PPr2)-Pr-i)(2) with elemental selenium in concentrated solvent conditions enables large scale preparation and improved yields of NH((PSePr2)-Pr-i)(2) that may be deprotonated with sodium methoxide to give NaN((PSePr2)-Pr-i)(2). Treatment of the sodium salt with appropriate Group 11 metal salts in methanol yields a range of trinuclear complexes. The protic solvent conditions utilized facilitate the reduction of copper(II) salts resulting in the isolation of copper( I) complexes. These new Group 11 complexes have been characterised by H-1 and P-31 NMR and IR spectroscopy, APCI mass spectrometry, microanalysis and X-ray crystallography. Thermolytic decomposition of the copper( I) precursors in the presence of the indium precursor, In[((SePPr2)-Pr-i)(2)N](2)Cl, has been carried in the solid state using AA-MOCVD to give copper indium diselenide solid state materials CuInSe2.