Kinetic and continuum modeling of high-temperature oxygen and nitrogen binary mixtures
Gimelshein, Sergey F. and Wysong, Ingrid J. and Fangman, Alexander J. and Andrienko, Daniil A. and Kunova, Olga V. and Kustova, Elena V. and Garbacz, Catarina and Fossati, Marco and Hanquist, Kyle (2022) Kinetic and continuum modeling of high-temperature oxygen and nitrogen binary mixtures. Journal of Thermophysics and Heat Transfer, 36 (2). pp. 399-418. ISSN 0887-8722 (https://doi.org/10.2514/1.T6258)
Preview |
Text.
Filename: Gimelshein_etal_THT_2022_Kinetic_and_continuum_modeling_of_high_temperature_oxygen_and_nitrogen_binary_mixtures.pdf
Accepted Author Manuscript License: Strathprints license 1.0 Download (1MB)| Preview |
Abstract
The present paper provides a comprehensive comparative analysis of thermochemistry models of various fidelity levels developed in leading research groups around the world. Fully kinetic, hybrid kinetic-continuum, and fully continuum approaches are applied to analyze parameters of hypersonic flows starting from the revision of single-temperature rate constants up to the application in 1-D postshock conditions. Comparison of state-specific and two-temperature approaches shows there are very significant and often qualitative differences in the time-dependent nonequilibrium reaction rates and their ratio to the corresponding single-temperature rates. A major impact of the vibration-dissociation coupling on the temporal relaxation of gas properties is shown. For instance, the legacy Park's model has a strongly nonlinear behavior of nonequilibrium reaction rate with vibrational temperature, while a nearly linear shape exists for all state-specific approaches. Analysis of vibrational level populations in the nonequilibrium region shows a profound impact of the numerical approach and the model on the population ratios, and thus vibrational temperatures inferred from such ratios. The difference in the ultraviolet absorption coefficients, calculated by a temperature-based spectral code using vibrational populations from state-specific and kinetic approaches, is found to exceed an order of magnitude.
ORCID iDs
Gimelshein, Sergey F., Wysong, Ingrid J., Fangman, Alexander J., Andrienko, Daniil A., Kunova, Olga V., Kustova, Elena V., Garbacz, Catarina, Fossati, Marco ORCID: https://orcid.org/0000-0002-1165-5825 and Hanquist, Kyle;-
-
Item type: Article ID code: 82162 Dates: DateEvent30 April 2022Published20 December 2021Published Online6 September 2021AcceptedSubjects: Technology > Mechanical engineering and machinery Department: Strategic Research Themes > Ocean, Air and Space
Faculty of Engineering > Mechanical and Aerospace EngineeringDepositing user: Pure Administrator Date deposited: 01 Sep 2022 12:45 Last modified: 02 Jan 2025 12:58 URI: https://strathprints.strath.ac.uk/id/eprint/82162