RBS analysis of InaGaN/GaN quantum wells for hybrid structures with efficient Forster coupling
Barradas, N.P. and Alves, E. and Pereira, S. and Watson, I.M. (2008) RBS analysis of InaGaN/GaN quantum wells for hybrid structures with efficient Forster coupling. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 288 (8). pp. 1402-1406. ISSN 0168-583X (http://dx.doi.org/10.1016/j.nimb.2007.12.052)
Full text not available in this repository.Request a copyAbstract
There is strong current interest in Förster resonant energy transfer (FRET) from a semiconductor quantum well (QW) to an overlayer of another luminescent material. The FRET process becomes efficient when the two materials are placed at interaction distance of a few nanometres. The additional requirement of large spectral overlap between the energy donor and acceptor can be satisfied by combinations of InGaN/GaN QWs (as donors) and overlayers of either light-emitting polymers or nanocrystalline semiconductor quantum dots (as acceptors), both of which can be tailored to have high absorption in the QW emission region. Here we study a set of custom grown InGaN/GaN single QW samples, in which the GaN cap layer thickness was varied to modulate the FRET rate in hybrid structures. We used high-resolution grazing angle RBS experiments to determine the GaN cap layer thickness, varied from 2 to 12 nm, which controlled the interaction distance between the QW and the coupled luminescent medium in hybrid structures. The very careful experiments and data analysis are discussed in detail, including a consideration of the errors in the final results obtained. An example of the use of the measured thickness values to confirm the dominance of sheet-to-sheet dipole-dipole interactions in QW-polymer hybrid structures is discussed.
ORCID iDs
Barradas, N.P., Alves, E., Pereira, S. and Watson, I.M. ORCID: https://orcid.org/0000-0002-8797-3993;-
-
Item type: Article ID code: 8122 Dates: DateEventApril 2008PublishedSubjects: Science > Physics > Optics. Light
Science > PhysicsDepartment: Faculty of Science > Physics
Faculty of Science > Physics > Institute of PhotonicsDepositing user: Miss Sharon Kelly Date deposited: 14 Dec 2009 11:58 Last modified: 02 Sep 2024 00:39 URI: https://strathprints.strath.ac.uk/id/eprint/8122