On the role of bandwidth in pump and seed light waves for stimulated Raman scattering in inhomogeneous plasmas

Luo, Mufei and Hüller, Stefan and Chen, Min and Sheng, Zhengming (2022) On the role of bandwidth in pump and seed light waves for stimulated Raman scattering in inhomogeneous plasmas. Physics of Plasmas, 29 (3). 032102. ISSN 1070-664X (https://doi.org/10.1063/5.0078985)

[thumbnail of Luo-etal-POP-2022-On-the-role-of-bandwidth-in-pump-and-seed-light]
Preview
Text. Filename: Luo_etal_POP_2022_On_the_role_of_bandwidth_in_pump_and_seed_light.pdf
Final Published Version
License: Strathprints license 1.0

Download (4MB)| Preview

Abstract

The effects of incoherence on the three-wave coupling process of backward stimulated Raman scattering (SRS) in inhomogeneous plasmas are investigated theoretically and numerically via a three-wave coupling model. The impact of the plasma wave nonlinearity is taken into account, namely, the effect of trapped electrons via a nonlinear frequency shift of the electron plasma wave. Incoherence in the coupling is introduced in the seed wave, and the laser pump wave via bandwidth associated with a Lorentzian power spectrum. It is found that temporal incoherence can suppress the instability as long as the gain associated with spatial amplification in an inhomogeneous plasma ("Rosenbluth gain") is smaller than 2. Otherwise, kinetic effects may destabilize SRS and significantly increase the backscatter level. For the bandwidth effects of the pump laser, a statistical analysis has been performed to examine the real impact of bandwidth. Moreover, a semi-analytical expression of the growth rate in the nonlinear stage is given. By estimating the bandwidth effects, it is found that a broad bandwidth of the pump laser starts to mitigate the scattering provided that the laser beam coherence time τc is shorter than γ 0 - 1, the inverse of the standard SRS growth rate γ0. However, to obtain effective mitigation, by maintaining SRS in an almost linear stage, it is found that the criterion γ 0 τ c ≤ 0.35 has to be fulfilled.

ORCID iDs

Luo, Mufei, Hüller, Stefan, Chen, Min and Sheng, Zhengming ORCID logoORCID: https://orcid.org/0000-0002-8823-9993;