Depth prediction of nanotags in tissue using Surface Enhanced Spatially Offset Raman Scattering (SESORS)

Berry, Matthew E. and McCabe, Samantha M. and Shand, Neil C. and Graham, Duncan and Faulds (She/Her), Karen (2022) Depth prediction of nanotags in tissue using Surface Enhanced Spatially Offset Raman Scattering (SESORS). Chemical Communications, 58 (11). pp. 1756-1759. ISSN 1359-7345 (https://doi.org/10.1039/D1CC04455A)

[thumbnail of Berry-etal-CC-2022-Depth-prediction-of-nanotags-in-tissue-using-Surface-Enhanced-Spatially-Offset-Raman-Scattering]
Preview
Text. Filename: Berry_etal_CC_2022_Depth_prediction_of_nanotags_in_tissue_using_Surface_Enhanced_Spatially_Offset_Raman_Scattering.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (2MB)| Preview

Abstract

A model for the prediction of the depth of two 'flavours' of surface enhanced Raman scattering (SERS) active nanotags embedded within porcine tissue is demonstrated using ratiometric analysis of the nanotag and tissue intensities in spatially offset Raman spectroscopy (SORS) measurements.

ORCID iDs

Berry, Matthew E. ORCID logoORCID: https://orcid.org/0000-0002-9712-0919, McCabe, Samantha M. ORCID logoORCID: https://orcid.org/0000-0002-4819-4268, Shand, Neil C., Graham, Duncan ORCID logoORCID: https://orcid.org/0000-0002-6079-2105 and Faulds (She/Her), Karen ORCID logoORCID: https://orcid.org/0000-0002-5567-7399;