Kikuchi pattern simulations of backscattered and transmitted electrons
Winkelmann, Aimo and Nolze, Gert and Cios, Grzegorz and Tokarski, Tomasz and Bała, Piotr and Hourahine, Ben and Trager‐Cowan, Carol (2021) Kikuchi pattern simulations of backscattered and transmitted electrons. Journal of Microscopy, 284 (2). pp. 157-184. ISSN 0022-2720 (https://doi.org/10.1111/jmi.13051)
Preview |
Text.
Filename: Winkelmann_etal_JM_2021_Kikuchi_pattern_simulations_of_backscattered_and_transmitted.pdf
Accepted Author Manuscript Download (1MB)| Preview |
Abstract
We discuss a refined simulation approach which treats Kikuchi diffraction patterns in electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD). The model considers the result of two combined mechanisms: (a) the dynamical diffraction of electrons emitted coherently from point sources in a crystal and (b) diffraction effects on incoherent diffuse intensity distributions. Using suitable parameter settings, the refined simulation model allows to reproduce various thickness- and energy-dependent features which are observed in experimental Kikuchi diffraction patterns. Excess-deficiency features are treated by the effect of gradients in the incoherent background intensity. Based on the analytical two-beam approximation to dynamical electron diffraction, a phenomenological model of excess-deficiency features is derived, which can be used for pattern matching applications. The model allows to approximate the effect of the incident beam geometry as a correction signal for template patterns which can be reprojected from pre-calculated reference data. As an application, we find that the accuracy of fitted projection centre coordinates in EBSD and TKD can be affected by changes in the order of 10-3-10-2 if excess-deficiency features are not considered in the theoretical model underlying a best-fit pattern matching approach. Correspondingly, the absolute accuracy of simulation-based EBSD strain determination can suffer from biases of a similar order of magnitude if excess-deficiency effects are neglected in the simulation model.
ORCID iDs
Winkelmann, Aimo, Nolze, Gert, Cios, Grzegorz, Tokarski, Tomasz, Bała, Piotr, Hourahine, Ben ORCID: https://orcid.org/0000-0002-7667-7101 and Trager‐Cowan, Carol ORCID: https://orcid.org/0000-0001-8684-7410;-
-
Item type: Article ID code: 78647 Dates: DateEvent30 November 2021Published18 July 2021Published Online15 July 2021AcceptedSubjects: Science > Physics
Medicine > Public aspects of medicine > Forensic Medicine. Medical jurisprudence. Legal medicineDepartment: Faculty of Science > Physics
Technology and Innovation Centre > PhotonicsDepositing user: Pure Administrator Date deposited: 19 Nov 2021 14:40 Last modified: 21 Nov 2024 01:21 URI: https://strathprints.strath.ac.uk/id/eprint/78647