Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Short Lexitropsin that Recognizes the DNA Minor Groove at 5'-ACTAGT-3': Understanding the Role of Isopropyl-thiazole

Anthony, N.G. and Johnston, B.F. and Khalaf, A.I. and Mackay, S.P. and Parkinson, J.A. and Suckling, C.J. and Waigh, R.D. (2004) Short Lexitropsin that Recognizes the DNA Minor Groove at 5'-ACTAGT-3': Understanding the Role of Isopropyl-thiazole. Journal of the American Chemical Society, 126 (36). pp. 11338-11349. ISSN 0002-7863

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Isopropyl-thiazole (iPrTh) represents a new addition to the building blocks of nucleic acid minor groove-binding molecules. The DNA decamer duplex d(CGACTAGTCG)2 is bound by a short lexitropsin of sequence formyl-PyPyiPrTh-Dp (where Py represents N-methyl pyrrole, iPrTh represents thiazole with an isopropyl group attached, and Dp represents dimethylaminopropyl). NMR data indicate ligand binding in the minor groove of DNA to the sequence 5'-ACT5AG7T-3' at a 2:1 ratio of ligand to DNA duplex. Ligand binding, assisted by the enhanced hydrophobicity of the iPrTh group, occurs in a head-to-tail fashion, the formyl headgroups being located toward the 5'-ends of the DNA sequence. Sequence reading is augmented through hydrogen bond formation between the exocyclic amine protons of G7 and the iPrTh nitrogen, which lies on the minor groove floor. The BI/BII DNA backbone equilibrium is altered at the T5 3'-phosphate position to accommodate a BII configuration. The ligands bind in a staggered mode with respect to one another creating a six base pair DNA reading frame. The introduction of a new DNA sequence-reading element into the recognition jigsaw, combined with an extended reading frame for a small lexitropsin with enhanced hydrophobicity, holds great promise in the development of new, potentially commercially viable drug lead candidates for gene targeting.