Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Lattice Boltzmann model for thermal transpiration

Tang, G.H. and Zhang, Y. H. and Gu, X.J. and Barber, R. W. and Emerson, D. R. (2009) Lattice Boltzmann model for thermal transpiration. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 79 (2). 027701. ISSN 1063-651X

[img]
Preview
Text (strathprints007762)
strathprints007762.pdf - Accepted Author Manuscript

Download (202kB) | Preview

Abstract

The conventional Navier-Stokes-Fourier equations with no-slip boundary conditions are unable to capture the phenomenon of gas thermal transpiration. While kinetic approaches such as the direct simulation Monte Carlo method and direct solution of the Boltzmann equation can predict thermal transpiration, these methods are often beyond the reach of current computer technology, especially for complex three-dimensional flows. We present a computationally efficient nonequilibrium thermal lattice Boltzmann model for simulating temperature-gradient-induced flows. The good agreement between our model and kinetic approaches demonstrates the capabilities of the proposed lattice Boltzmann method.