A new cavitation model considering inter-bubble action

Shi, Yazhen and Luo, Kai and Chen, Xiaopeng and Li, Daijin and Jia, Laibing (2021) A new cavitation model considering inter-bubble action. International Journal of Naval Architecture and Ocean Engineering, 13. pp. 566-574. ISSN 2092-6790 (https://doi.org/10.1016/j.ijnaoe.2021.05.005)

[thumbnail of Shi-etal-IJNAOE-2021-A-new-cavitation-model-considering-inter-bubble]
Text. Filename: Shi_etal_IJNAOE_2021_A_new_cavitation_model_considering_inter_bubble.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB)| Preview


The process of cavitation involves generation, growth, coalescence, and collapse of small bubbles and is tremendously influenced by bubble–bubble interactions. To understand these interactions, a new cavitation model based on the transport equation is proposed herein. The modified Rayleigh–Plesset equation is analyzed to determine the bubble growth rate by assuming equal-sized spherical bubble clouds. The source term in the transport equation is then derived according to the bubble growth rate with the bubble-bubble interaction. The proposed model is validated by various test simulations, including microscopic bubble cloud evolution as well as macroscopical two- and three-dimensional cavitating flows. Compared with previous models, namely the Kunz and Zwart cavitation models, the newly proposed model does not require adjustable parameters and generally results in better predictions both microscopic and macroscopical cases. this model is more physical.