Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Development of an adaptive window-opening algorithm to predict the thermal comfort, energy use and overheating in buildings

Rijal, Hom B. and Tuohy, Paul Gerard and Nicol, J. Fergus and Humphreys, Michael A. and Samuel, Aizaz and Clarke, Joseph Andrew (2008) Development of an adaptive window-opening algorithm to predict the thermal comfort, energy use and overheating in buildings. Journal of Building Performance Simulation, 1 (1). pp. 17-30. ISSN 1940-1493

[img] PDF
Tuohy_P_Pure_Development_of_an_adaptive_window_opening_algorithm_to_predict_the_thermal_comfort_energy_use_and_overheating_in_buildings_Jan_2008.pdf
Preprint

Download (338kB)

    Abstract

    This investigation of the window opening data from extensive field surveys in UK office buildings demonstrates: 1) how people control the indoor environment by opening windows; 2) the cooling potential of opening windows; and 3) the use of an ‘adaptive algorithm’ for predicting window opening behaviour for thermal simulation in ESP-r. It was found that when the window was open the mean indoor and outdoor temperatures were higher than when closed, but show that nonetheless there was a useful cooling effect from opening a window. The adaptive algorithm for window opening behaviour was then used in thermal simulation studies for some typical office designs. The thermal simulation results were in general agreement with the findings of the field surveys. The adaptive algorithm is shown to provide insights not available using non adaptive simulation methods and can assist in achieving more comfortable, lower energy buildings while avoiding overheating.