The mechanism of hydrogen donation by bio-acids over metal supported on nitrogen-doped carbon nanotubes

Zhang, Jiajun and Zhang, Xiaolei and Osatiashtiani, Amin and Luo, Kai Hong and Shen, Dekui and Li, Jun and Bridgwater, Anthony (2021) The mechanism of hydrogen donation by bio-acids over metal supported on nitrogen-doped carbon nanotubes. Molecular Catalysis, 499. 111289. ISSN 2468-8231

[img]
Preview
Text (Zhang-etal-MC-2020-The-mechanism-of-hydrogen-donation-by-bio-acids-over-metal-supported)
Zhang_etal_MC_2020_The_mechanism_of_hydrogen_donation_by_bio_acids_over_metal_supported.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (6MB)| Preview

    Abstract

    Biomass-derived carboxylic acids (e.g. acetic acid AcOH and formic acid FA) are a green and low-cost hydrogen source to replace hazardous H2 gas in in-situ hydrogenation processes. To date, bio-acids dehydrogenation has been mainly conducted using noble metal catalysts which would negatively impact the process economy, thus development of efficient non-noble metal catalysts for this purpose is highly desirable. In this study, the performance of transition metals supported on nitrogen doped carbon nanotubes was thoroughly evaluated by computational modelling based on Density Functional Theory (DFT). Results revealed that, out of the 10 selected transition metal candidates, molybdenum (Mo) was most active for binding AcOH and a combination of Mo and nitrogen doping significantly enhanced binding to the carboxylic acid molecules compared to pristine carbon nanotubes (CNTs). The newly designed Mo/N-CNT catalysts considerably facilitated the bio-acids decomposition compared to the non-catalytic scenarios by lowering energy barriers. FA distinctly outperformed AcOH in hydrogen donation over Mo/N-CNT catalysts, through its spontaneous cleavage leading to facile hydrogen donation.