Parameter design oriented analysis of the current control stability of the weak-grid-tied VSC
Wu, Guanglu and Sun, Huadong and Zhang, Xi and Egea-Alvarez, Agusti and Zhao, Bing and Xu, Shiyun and Wang, Shanshan and Zhou, Xiaoxin (2020) Parameter design oriented analysis of the current control stability of the weak-grid-tied VSC. IEEE Transactions on Power Delivery. ISSN 0885-8977 (https://doi.org/10.1109/TPWRD.2020.3009517)
Preview |
Text.
Filename: Wu_etal_IEEE_TPD_2020_Parameter_design_oriented_analysis_of_the_current_control_stability_of_the_weak_grid_tied_VSC.pdf
Accepted Author Manuscript Download (7MB)| Preview |
Abstract
This paper studies the dynamic behaviors of weak-grid-tied VSCs with simplified transfer functions, which provides an accurate stability analysis and useful indications for tuning system parameters. A reduced-order multi-input multi-output (MIMO) transfer function that contains four single-input single-output (SISO) transfer functions for the weak-grid-tied VSC is first presented. It is found that the four SISO transfer functions share the same equivalent open-loop transfer function, i.e., the same stability conclusion. The Bode plots of the equivalent open-loop transfer function show that the inner current loop behaves as a band-pass filter whose maximum gain is approximately at the frequency of the PLL's bandwidth. By stability criterion, the harmonic amplification and instability occur when its maximum gain exceeds 0dB caused by high PLL's bandwidth, large grid impedance or high active power. It is also found that the target system is less stable when it works as an inverter than as a rectifier, due to the risk of the local positive feedback in the inverter mode. An effective criterion is further proposed to guide the selection of a proper PLL's bandwidth to ensure the stability of the VSC system. Simulation results validate the correctness of the analysis and the efficacy of the criterion.
ORCID iDs
Wu, Guanglu, Sun, Huadong, Zhang, Xi, Egea-Alvarez, Agusti ORCID: https://orcid.org/0000-0003-1286-6699, Zhao, Bing, Xu, Shiyun, Wang, Shanshan and Zhou, Xiaoxin;-
-
Item type: Article ID code: 73298 Dates: DateEvent17 July 2020Published17 July 2020Published Online10 July 2020AcceptedNotes: © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Subjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 22 Jul 2020 15:03 Last modified: 08 Jan 2025 18:06 URI: https://strathprints.strath.ac.uk/id/eprint/73298