Truncated Euler-Maruyama method for classical and time-changed non-autonomous stochastic differential equations
Tools
Liu, Wei and Mao, Xuerong and Tang, Jingwen and Wu, Yue (2020) Truncated Euler-Maruyama method for classical and time-changed non-autonomous stochastic differential equations. Applied Numerical Mathematics, 153. pp. 66-81. ISSN 0168-9274 (https://doi.org/10.1016/j.apnum.2020.02.007)
Preview |
Text.
Filename: Liu_etal_ANM_2020_Truncated_Euler_Maruyama_method_for_classical_and_time_changed.pdf
Accepted Author Manuscript License: ![]() Download (458kB)| Preview |
Abstract
The truncated Euler-Maruyama (EM) method is proposed to approximate a class of non-autonomous stochastic differential equations (SDEs) with the Hölder continuity in the temporal variable and the super-linear growth in the state variable. The strong convergence with the convergence rate is proved. Moreover, the strong convergence of the truncated EM method for a class of highly non-linear time-changed SDEs is studied.
ORCID iDs
Liu, Wei, Mao, Xuerong
-
-
Item type: Article ID code: 71472 Dates: DateEvent31 July 2020Published12 February 2020Published Online9 February 2020AcceptedSubjects: Science > Mathematics Department: Faculty of Science > Mathematics and Statistics Depositing user: Pure Administrator Date deposited: 14 Feb 2020 01:21 Last modified: 20 Feb 2025 01:55 URI: https://strathprints.strath.ac.uk/id/eprint/71472
CORE (COnnecting REpositories)