Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Evaluating the voltage regulation of a UPFC using PI and fuzzy logic controller

Al-Mawsawi, S. and Qader, M. and Lo, K.L. (2002) Evaluating the voltage regulation of a UPFC using PI and fuzzy logic controller. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 21 (3). pp. 409-424. ISSN 0332-1649

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In recent years it has been illustrated that the Unified Power Flow Controller (UPFC) installation location plays an important role in effecting nonlinearly its steady state performance. A Pulse Width Modulation (PWM) based UPFC used as a voltage regulator is modeled and analyzed to investigate its optimal position in the transmission line. From the simulation results it is demonstration that by varying the modulation index of the device it can control the distribution of the active and reactive power flows. In addition, this paper deals with the definition and simulation of the control strategy of the closed-loop UPFC with a series compensation block when it operates as a terminal voltage regulator using Electromagnetic Transients Program (EMTP). The design and simulation of two types of digital controller strategies for the study system in this paper have been carried out. The dynamic performance in terms of speed stability, accuracy, robustness and simplicity of a PI controller with gain scheduling and a fuzzy logic controller have been tested and compared.