Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Effect of flow development region and fringing magnetic force field on annular split-flow thin fractionation

Zhang, Yonghao and Emerson, David (2004) Effect of flow development region and fringing magnetic force field on annular split-flow thin fractionation. Journal of Chromatography A, 1042 (1-2). pp. 137-145.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Split-flow thin (SPLITT) fractionation devices have been widely used to separate macromolecules, colloids, cells and particles. Recently, the quadrupole magnetic flow sorter (QMS) has been reported in the literature as another family of SPLITT fractionation device. However, the separation performance observed in the experimental measurements is generally found to deviate from the ideal behaviour. Possible causes such as hydrodynamic lift force, high particle concentration and imperfect geometries have been extensively examined. However, the effects of flow development regions and fringing magnetic force field at the separation channel inlet and outlet, which are ignored by the theory, have not been investigated. The error introduced by ignoring these effects need to be rigorously studied so that the theory can be used to optimise operation flow rates with confidence. Indeed, we find in this paper that these ignored effects are responsible to the discrepancy between the experimental data and the theoretical predictions. A new theory has been proposed for optimisation of device operation.