Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

F. E.-assisted design of the eaves bracket of a cold-formed steel portal frame

Lim, J.B.P. and Nethercot, D.A. (2002) F. E.-assisted design of the eaves bracket of a cold-formed steel portal frame. Steel and Composite Structures, 2 (6). pp. 411-428. ISSN 1229-9367

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Non-linear large-displacement elasto-plastic finite element analyses are used to propose design recommendations for the eaves bracket of a cold-formed steel portal frame. Owing to the thinness of the sheet steel used for the brackets, such a structural design problem is not trivial as the brackets need to be designed against failure through buckling; without availability of the finite element method, expensive laboratory testing would therefore be required. In this paper, the finite element method is firstly used to predict the plastic moment capacity of the eaves bracket. Parametric studies are then used to propose design recommendations for the eaves bracket against two potential buckling modes of failure: (1) buckling of the stiffened free-edge into one-half sine wave, (2) local plate buckling of the exposed triangular bracket area. The results of full-scale laboratory tests on selected geometries of eaves bracket demonstrate that the proposed design recommendations are conservative. The use of the finite element method in this way exploits modern computational techniques for an otherwise difficult structural design problem.