Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Peaking demand factor-based reliability analysis of water distribution system

Surendran, S. and Tanyimboh, T. and Tabesh, M. (2005) Peaking demand factor-based reliability analysis of water distribution system. Advances in Engineering Software, 36 (11-12). pp. 789-796. ISSN 0965-9978

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Water demands vary and consideration of the probabilistic nature of the variations should lead to more instructive assessments of the performance of water distribution systems. Water consumption data for several households were analysed using the chi-square technique and it was found that distributions worth considering under certain circumstances include the normal and lognormal. Reliability values were calculated for a range of critical demand values and the corresponding confidence levels determined from the probability distributions. Water consumption was assumed to be pressure dependent and the modelling of the water distribution system was carried out accordingly. This peaking factor approach coupled with the statistical modelling of demands provides a more realistic way of incorporating variations in demands in the evaluation and reporting of system performance than the traditional single demand value approach in that the extent to which a network can satisfy any demand and the probability that the demand will occur can be recognized explicitly. The method is illustrated by an example.