Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Experimental study on the influences of operating parameters on the retention of potassium during the biomass combustion

Cao, Wenhan and Peshkur, Tanya and Lue, Leo and Li, Jun (2019) Experimental study on the influences of operating parameters on the retention of potassium during the biomass combustion. Energy Procedia, 158. pp. 1033-1038. ISSN 1876-6102

Text (Cao-etal-EP-2019-operating-parameters-on-the-retention-of-potassium-during-the-biomass-combustion)
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (793kB) | Preview


Quantify the potassium in biomass combustion residues is an alternative way to study the release mechanisms of potassium which is essential to mitigate the ash-related problems while using biomass fuels. In this work, different combustion parameters were used to study the retention of potassium via high-temperature furnace balance system and then Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Through the investigation, final temperature influences the retention of potassium the most, there is 80% of potassium left when temperature is 200℃, while this number sharply dropped to 42% when temperature reaches 1000℃. There is a little different of the retained potassium between the heating rate of 500℃/h and 1000℃/h at selected temperatures, while the high heating rate (1500℃/h) results in the 20% less of retained potassium compared to that of the heating rate of 1000℃/h. The influence of isothermal time is insignificant when temperature