Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Polarisation corrections and the hydration free energy of water

Milne, Andrew W. and Jorge, Miguel (2018) Polarisation corrections and the hydration free energy of water. Journal of Chemical Theory and Computation. ISSN 1549-9618

Text (Milne-Jorge-ACS-JCTC-2018-Polarisation-corrections-and-the-hydration-free-energy-of-water)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview


    Classical non-polarisable water models play a crucial role in computer simulations due to their simplicity and computational efficiency. However, the neglect of explicit polarisation can jeopardise their accuracy and predictive capabilities, particularly for properties that involve a change in electrostatic environment (e.g. phase changes). In order to mitigate this intrinsic shortcoming, highly simplified analytical polarisation corrections describing the distortion of the molecular dipole are commonly applied in force field development and validation. In this paper, we perform molecular dynamics simulations and thermodynamic integration to show that applying the current state-of-the-art polarisation corrections leads to a systematic inability of current non-polarisable water models to simultaneously predict the experimental enthalpy of vaporisation and hydration free energy. We go on to extend existing theories of polarisation and combine them with data from recent ab initio molecular dynamics simulations to obtain a better estimate of the real contribution of polarisation to phase-change energies and free energies. Our results show that for strongly polar molecules like water, the overall polarisation correction is close to zero, resulting from a cancellation of multipole distortion and purely electronic polarisation effects. In light of these findings, we suggest that parametrisation of classical non-polarisable models of water should be revisited in an attempt to simultaneously describe phase-change energetics and other thermodynamic and structural properties of the liquid.