Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Engineering of acetaminophen particle attributes using a wet milling crystallisation platform

Ahmed, Bilal and Brown, Cameron J. and McGlone, Thomas and Bowering, Deborah L. and Sefcik, Jan and Florence, Alastair J. (2019) Engineering of acetaminophen particle attributes using a wet milling crystallisation platform. International Journal of Pharmaceutics, 554. pp. 201-211. ISSN 0378-5173

[img]
Preview
Text (Ahmed-etal-IJP-2018-Engineering-of-acetaminophen-particle-attributes-using-a-wet)
Ahmed_etal_IJP_2018_Engineering_of_acetaminophen_particle_attributes_using_a_wet.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (3MB)| Preview

    Abstract

    Wet milling coupled with crystallisation has considerable potential to deliver enhanced control over particle attributes. The effect of process conditions and wet mill configuration on particle size, shape and surface energy has been investigated on acetaminophen using a seeded cooling crystallisation coupled with a wet mill unit generating size controlled acetaminophen crystals through an interchangeable rotor-tooth configuration. The integrated wet milling crystallisation platform incorporates inline focused beam reflectance measurement (FBRM) and particle vision measurement (PVM) for in-depth understanding of particle behaviour under high-shear conditions. We used a recently developed computational tool for converting chord length distribution (CLD) from FBRM to particle size distribution (PSD) to obtain quantitative insight into the effect of the competing mechanisms of size reduction and growth in a wet milling seeded crystallisation process for acetaminophen. The novelty of our wet milling crystallisation approach is in delivery of consistent surface energies across a range of particle sizes. This highlights the potential to engineer desirable particle attributes through a carefully designed, highly intensified crystallisation process.