Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Direct solution of multi-objective optimal control problems applied to spaceplane mission design

Ricciardi, Lorenzo A. and Maddock, Christie Alisa and Vasile, Massimiliano (2018) Direct solution of multi-objective optimal control problems applied to spaceplane mission design. Journal of Guidance, Control and Dynamics. ISSN 1533-3884 (In Press)

Text (Ricciardi-etal-JGCD-2018-Direct-solution-of-multi-objective-optimal-control-problems)
Accepted Author Manuscript

Download (2MB)| Preview


    This paper presents a novel approach to the solution of multi-phase multi-objective optimal control problems. The proposed solution strategy is based on the transcription of the optimal control problem with Finite Elements in Time and the solution of the resulting Multi-Objective Non-Linear Programming (MONLP) problem with a memetic strategy that extends the Multi Agent Collaborative Search algorithm. The MONLP problem is reformulated as two non-linear programming problems: a bi-level and a single level problem. The bi-level formulation is used to globally explore the search space and generate a well spread set of non-dominated decision vectors while the single level formulation is used to locally converge to Pareto efficient solutions. Within the bi-level formulation, the outer level selects trial decision vectors that satisfy an improvement condition based on Chebyshev weighted norm, while the inner level restores the feasibility of the trial vectors generated by the outer level. The single level refinement implements a Pascoletti-Serafini scalarisation of the MONLP problem to optimise the objectives while satisfying the constraints. The approach is applied to the solution of three test cases of increasing complexity: an atmospheric re-entry problem, an ascent and abort trajectory scenario and a three-objective system and trajectory optimisation problem for spaceplanes.