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This paper presents a novel approach to the solution of multi-phase multi-objective optimal

control problems. The proposed solution strategy is based on the transcription of the optimal

control problem with Finite Elements in Time and the solution of the resultingMulti-Objective

Non-Linear Programming (MONLP) problem with a memetic strategy that extends the Multi

AgentCollaborative Search algorithm. TheMONLPproblem is reformulated as two non-linear

programming problems: a bi-level and a single level problem. The bi-level formulation is used

to globally explore the search space and generate a well spread set of non-dominated decision

vectors while the single level formulation is used to locally converge to Pareto efficient solutions.

Within the bi-level formulation, the outer level selects trial decision vectors that satisfy an

improvement condition based on Chebyshev weighted norm, while the inner level restores

the feasibility of the trial vectors generated by the outer level. The single level refinement

implements aPascoletti-Serafini scalarisation of theMONLPproblem to optimise the objectives

while satisfying the constraints. The approach is applied to the solution of three test cases

of increasing complexity: an atmospheric re-entry problem, an ascent and abort trajectory

scenario and a three-objective system and trajectory optimisation problem for spaceplanes.

Nomenclature

b = static parameter vector

C = constraint vector

CD = drag coefficient

CL = lift coefficient

D = aerodynamic drag force (N)

E = energy function

fs, j = Bernstein polynomials
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g = algebraic constraints

g0 = magnitude of gravitational acceleration at sea level (m/s2)

h = altitude (m)

Isp = specific impulse (s)

J = objective vector

L = aerodynamic lift force (N)

M = mach number

m = vehicle mass (kg)

mp = mass of propellant (kg)

p = decision vector

pa = atmospheric pressure (Pa)

qflux = heat flux (W/m2)

RE = radius of the Earth (m)

r = position vector in inertial frame (m)

Sre f = aerodynamic surface reference area (m2)

T = time domain

T = magnitude of thrust (N)

t = time (s)

u = control vector

v = velocity in inertial frame (m/s)

w = weight functions

x = state vector

y = vector of state weights

z = utopia point

α = angle of attack (rad)

βk = Gauss integration weights

γ = flight path angle (rad)

δT = throttle

θ = latitude (rad)

λ = longitude (rad)

µE = gravitational parameter of Earth (m3/s2)

ρa = atmospheric density (kg/m3)
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σ = bank angle (rad)

τ = normalised time

φi = scalar objective function

χ = heading angle (rad)

ψ = boundary constraints

ω = weight of descent directions

ωE = magnitude of angular velocity of the Earth (rad/s)

Subscripts

0 = initial

f = final

I. Introduction

This paper proposes a method for the solution of multi-objective, multi-phase optimal control problems. In the past

three decades, a considerable body of work has been dedicated to the direct solution of single objective optimal

control problems, see e.g., [1–8] and references therein, and translated into a number of commercial and open source

software∗,†. However, while conditions of optimality and related theoretical aspects of multi-objective optimal control

problems have been studied in a number of papers, see [9–13] and references therein, less research has been dedicated

to the solution of multi-objective optimal control problems.

Ober-Blöbaum et al. [14] coupled a direct transcription approach with an approach that scalarised the multi-objective

vector along directions pointing at predefined unreachable points in the criteria space. Each scalar problem was then

solved with a standard NLP solver. This approach was employed to solve an interplanetary trajectory optimisation.

Kaya and Maurer [15] proposed a similar approach but used the Pascoletti-Serafini scalarisation [16] to transform the

multi-objective optimisation problem in a set of single-objective optimisation problems, and employed the resulting

approach to solve chemical reaction engineering and drug dosage problems. Pagano and Mooij [17] optimised the mass

of the payload for a launch vehicle and minimised the violation of the constraints as a second objective, Bairstow et al.

[18] performed a multiobjective optimisation of a two stage launcher minimising cost and maximising the payload and

Roshanian et al. [19] performed robust design optimisation of a two stage launch vehicle by means of multiobjective

optimisation, minimising both the mean and the variance of the gross take-off mass when several design and operative

parameters where subject to uncertainty. In these last three works the control laws had a simple parametric shape. The

parameters describing those shapes were optimisation variables, and stochastic multiobjective optimisation algorithms

were employed to find the set of Pareto optimal solutions. Coverstone-Carroll et al. [20] combined Genetic Algorithms
∗https://en.wikipedia.org/wiki/Trajectory_optimization
†https://en.wikipedia.org/wiki/Optimal_control

3

https://en.wikipedia.org/wiki/Trajectory_optimization
https://en.wikipedia.org/wiki/Optimal_control


and optimal control theory in a dual loop algorithm. In the outer loop, a Multi-Objective Genetic Algorithm (MOGA)

was generating vectors of co-states and times of flight. For each set, the inner loop was solving a single objective optimal

control problem with given time of flight, minimising the propellant consumption. Englander et al. [21] proposed a

dual loop algorithm in which the outer loop solves a multi-objective problem handling a set of categorical variables

through a multi-objective genetic algorithm and the inner loop solves a set of single objective constrained optimal

control problems using Monotonic Basin Hopping [22].

The method proposed in this work is based on a direct transcription with Finite Elements in Time [6] (DFET)

and a solution of the resulting Multi-Objective Nonlinear Programming (MONLP) problem with a version of Multi

Agent Collaborative Search [23] (MACS) called MACSoc. DFET have been successfully used to solve many difficult

single-objective trajectory optimisation problems [3, 4, 24, 25]. Similarly, MACS has been tested and validated on

a number of benchmarks of difficult multi-objective optimisation problems[23][26]. Previous work by the authors

validated the pairing of DFET and MACS on a set of optimal control problems with known solutions [27][28]. Here,

this pairing is extended to treat more complex multi-objective optimal control problems, with the inclusion of static

system design parameters and multiple phases. The method proposed in this paper differentiates from Ober-Blöbaum

et al. [14] and Kaya and Maurer [15] in that it combines a global exploration and local convergence with a smooth

transition between Chebyshev and Pascoletti-Serafini scalarisation [16] and incorporates an automatic and unsupervised

procedure to generate feasible first guesses. It also differentiates from [17–21] in that it does not use a generic MOGA

but proposes a more efficient memetic approach and implements a more general direct transcription method.

The method is applied to three realistic test cases for spaceplane-based launch vehicles, optimising the ascent,

descent and abort trajectories and some key vehicle and mission design variables. A considerable amount of work has

been devoted to the off-line optimisation of ascent and re-entry trajectories for launch systems with the inclusion of

progressively more sophisticated physics and constraints examining the launch system design and performance [29–33],

and the fast and robust generation of a guidance law with the ultimate goal to have an on-line closed loop guidance

update [34–39]. This paper departs from these two streams of research, and focuses on the off-line generation of Pareto

optimal trade-off solutions for a generic multi-objective optimal control problem. The three test cases were selected to

show the benefits of this method to the trade-off and feasibility studies conducted during the initial design phases.

The paper is structured as follows: after formulating the multi-objective optimal control problem, the paper briefly

introduces the transcription method and then presents the approach to the solution of the resulting MONLP problem.

The application to the three case studies follows with a demonstration of the effectiveness of the proposed approach and

the added value of the multi-objective formulation.
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II. Direct Transcription of Multi-Objective Optimal Control Problems
Multi-, or more generally many, objective optimal control problems can be formulated as follows:

min
u∈U,b∈B

J

s.t.

Ûx = F(x, u, b, t)

g(x, u, b, t) ≥ 0

ψ(x0, x f , t0, t f , b) ≥ 0

t ∈ [t0, t f ]

(1)

where J = [J1, J2, ..., Ji ..., Jm]T is, in general, a vector of objectives Ji that are functions of the state vector x :

[t0, t f ] → Rn, control variables u ∈ L∞(U ⊆ Rnu ), static parameters b ∈ B ⊆ Rnb and time t. The functions x(t)

belong to the Sobolev spaceW1,∞ while the objective functions are Ji : R3n+2 × Rnu × Rnb −→ R. The objective

vector is subject to a set of dynamic constraints with F : Rn × Rnu × Rnb × [t0, t f ] −→ Rn, algebraic constraints

g : Rn × Rnu × Rnb × [t0, t f ] −→ Rng , and boundary conditions ψ : R2n+2 × Rnb −→ Rnψ . In the following we will

consider only Mayer’s types of optimal control problems, whereby each objective function is expressed as a scalar

function of the boundary conditions, boundary times and static parameters:

Ji = φ(x0, x f , t0, t f , b) (2)

Note that, if boundary states and times, x0, x f , t0, t f are free decision variables, they can be included in the static

parameter vector b and the union of controls and static parameters is called a decision vector. Thus, without loss of

generality, one can say that the solution of problem (1) is a subset of U × B that satisfies the constraints and contains

Pareto efficient decision vectors. This leads to the following definition.

Definition II.1 Given the subset ΩU ⊂ U × B of feasible decision vectors, a decision vector [u∗, b∗] ∈ ΩU is said to be

Pareto efficient if [u∗, b∗] � [u, b], ∀[u, b] ∈ ΩU .

The symbol of dominance � is introduced to indicate that if [u, b]1 � [u, b]2 then Ji([u, b]2) ≤ Ji([u, b]1) for i = 1, . . . ,m

and ∃ j such that Jj([u, b]2) < Jj([u, b]1).

A. Direct Transcription with Finite Elements in Time

In this paper it is proposed to transcribe problem (1) into a many-objective, non-linear programming problem via

DFET [6]. DFET was initially proposed by Vasile [24] in 2000 and uses finite elements in time on spectral bases to
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transcribe the differential equations into a set of algebraic equations. Finite Elements in Time (FET) for the indirect

solution of optimal control problems were initially proposed by Hodges and Bless [40], and during the late 1990s evolved

to the discontinuous version. As pointed out by Bottasso and Ragazzi [41], FET for the forward integration of ordinary

differential equations are equivalent to some classes of implicit Runge-Kutta integration schemes, can be extended to

arbitrary high-order, are very robust and allow full h-p adaptivity. In the past decade, direct transcription with FET

on spectral bases has been successfully used to solve a range of difficult problems: from the design of low-thrust

multi-gravity assist trajectories to Mercury [4] and to the Sun [25], to the design of weak stability boundary transfers to

the Moon, low-thrust transfers in the restricted three body problem and optimal landing trajectories to the Moon [24].

Following the standard procedure for DFET transcription (see [6] for more details), the time domain T is decomposed

into N finite elements such that:

T =
N⋃
j=1
Tj(tj−1, tj) =

[
t0, t f

]
(3)

with tN = t f . On each time element, the differential constraints in (1) are first recast in weak form and integrated by

parts leading to: ∫
Tj
ÛwTx + wTF(x, u, b, t) dt − wT (tj)xbj + wT (tj−1)xbj−1 = 0 (4)

where w are generalised weight functions, and xbj and xb
j−1 are the values of the states at the boundaries of each element.

Then, states, controls and weight functions are transcribed in polynomial form as follows:

xj(t) =
lx∑
s=0

fs, j(t) xs, j (5a)

uj(t) =
lu∑
s=0

fs, j(t)us, j (5b)

wj(t) =
lx+1∑
s=0

fs, j(t)ws, j (5c)

where functions fs, j are chosen among the space of Bernstein polynomials. It is practical to redefine Eq. (4) and basis

functions (5) over the normalised interval [−1, 1] through the transformation:

τ = 2
t − tj−tj−1

2
tj − tj−1

tj−1 ≤ t ≤ tj (6)

where τ is the normalised time. This way the domain of the basis function is constant and irrespective of the size of the

element. By substituting Eqs. (5) into (4) and solving the integral with a Gauss quadrature formula on lu Gauss nodes,

one gets:
lu∑
k=0

βk

[
Ûwj(τk)Txj(τk) + wj(τk)TFj(τk)

∆tj
2

]
− wT (1)xbj + wT (−1)xbj−1 = 0 (7)
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where τk and βk areGauss nodes andweights,∆tj = (tj−tj−1) andFj(τk) is the shorthand notation forF
(
xj(τk), uj(τk), b, t(τk)

)
.

Since Eq. (7) must be valid for every arbitrary ws, j , Eq. (7) gives rise to a system of (lx + 1) vector equations for each

element: ∑lu
k=0 βk

[
Ûf1, j(τk) xj(τk) + f1, j(τk)Fj(τk)

∆tj
2

]
+ xb

j−1 = 0
...∑lu

k=0 βk

[
Ûfs, j(τk)xj(τk) + fs, j(τk)Fj(τk)

∆tj
2

]
= 0

...∑lu
k=0 βk

[
Ûflx+1, j(τk)xj(τk) + flx+1, j(τk)Fj(τk)

∆tj
2

]
− xbj = 0

(8)

Path constraints are evaluated at Gauss nodes for each element:

g
(
xj(τk), uj(τk), b, t(τk)

)
≥ 0 (9)

Continuity conditions are then imposed on the boundary states of adjacent elements, such that all boundary values xbj
cancel out except for the initial boundary term of the first element xb0 and last boundary element of the last element xb

f
.

Thus, once all the elements are assembled together, the only parameters (or decision variables) that remain to be defined

are xs, j for the states, us, j for the controls, the boundary states xb0 and xb
f
, the time variables t0 and t f and the static

parameters b. Each transcribed objective function in Mayer’s form (2) is calculated simply as:

J̃i = φi(xb0 , x
b
f , t0, t f , b) (10)

The time domain T corresponds to a single time phase, or timeline. However, a general problem can have multiple

phases either in series or in parallel. For example, a multi-stage vehicle can have one phase per vehicle stage with all

phases connected in series for the ascent, and/or branching parallel phases for the upper stage ascent and first stage

descent and return. These branching phases can also be seen in abort scenarios, which comprises one of the test cases in

this paper. When Np phases are present, dynamic constraints (7), path and boundary constraints, g and ψ, and objective

functions (10) are defined on each timeline. In order to connect different timelines, a set of Nip inter-phase constraints

are introduced:

ψsp

(
xb0,Isp , x

b
f ,Isp

, t0,Isp , t f ,Isp
)
≥ 0 sp = 1, ..., Nip (11)

where the index vector Isp collects all the indexes of the phases that are connected by constraint ψsp . Note that the

number of phases is fixed, but their temporal order is actually defined by the inter-phase constraints (11). Section IV

will show one example with two sequential phases and another one with branching parallel phases.

The resulting MNLP problem coming from the transcription of problem (1), with the inclusion of interphase
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constraints (11), can be written, in vector form, as:

min
y∈Y,p∈Π

J̃

s.t .

C(y, p) ≥ 0

(12)

where y = [x0,1, .., xs, j, ..., xlx,N ]T , Y is a box in RnY with nY = n(lx + 1)N , p = [u0,1, .., us, j, ..., ulu,N, b∗]T collects all

the static and discretised dynamic control variables, b∗ = [b, xb0 , x
b
f
, t0, t f ]T , Π ⊆ Rns × Rn∗

b , with ns = nu(lu + 1)N

(assuming that each element has the same number of control parameters) and n∗
b
= nb + 2n + 2, and C collects all

constraints, including boundary and interphase ones.

Similar to problem (1), the solution of problem (12) is a subset of ΩΠ ⊂ Π that satisfies the constraints and contains

vectors p that are Pareto efficient. For continuous functions, the subset ΩΠ is a manifold in Rns+n
∗
b with dimension

≤ (m − 1) [42]. In the following, the goal will be to identify a pre-defined countable number of Pareto efficient solutions

contained in ΩΠ .

III. Solution of the Transcribed Problem
Problem (12) is solved with a memetic many-objective optimisation algorithm, adapted from MACS (Multi-Agent

Collaborative Search [23, 26]) and called MACSoc, that combines a stochastic agent-based global search with a local

(gradient-based in this case) refinement of the solutions [27, 28, 43]. The overall solution process implemented in

MACSoc is summarised in Algorithm 1.

At the start of MACSoc, Na candidate solutions are generated with a Latin Hypercube sampling, associated to a

population P0 of Na agents, and an attempt is made to make each candidate solution feasible before the optimisation

process starts (line 1 in Algorithm 1). Both the global search and local refinement strategies implemented in MACSoc

require the definition of a set of descent directions in criteria space, thus, after initialising the agents, the algorithm

generates Nw uniformly spread weight vectors ω (line 2 in Algorithm 1) that define the components of Nw descent

vectors; this is explained further in Subsection E. Each agent will be associated to a different weight vector, allowing

each agent to converge to a different part of the Pareto front.

The global search generates candidate solutions, for the decision vector, using a combination of social and

individualistic actions (lines 4 and 7 in Algorithm 1). Each action generates a candidate decision vector, starting from

the current solution allocated to a given agent j, and submits it to a bi-level optimisation problem, where the inner level

makes the candidate decision vector feasible, with respect to differential, path, and boundary constraints, and the outer

level assesses whether the solution of the inner level represents an improvement with respect to the current solution

allocated to agent j. All feasible and non-dominated solutions update the current population Pk and are saved in an
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Algorithm 1 MACS optimal control (MACSoc) framework
1: Initialise population P0 and global archive A0, k = 0, ρB = 1
2: Initialise weight vectors ω
3: while n_ f un_eval < max_ f un_eval do
4: Run individualistic heuristics on Pk using bi-level formulation
5: Pk → P+k
6: Update archive Ak with potential field filter
7: Run social heuristics combining P+

k
and Ak using bilevel formulation

8: Update archive Ak with potential field filter
9: P+

k
→ P†

k
10: if local search triggered then
11: Run gradient based refinement using single level formulation
12: P†

k
→ P∗

k
13: Update archive Ak with potential field filter
14: P∗

k
→ Pk+1

15: else
16: P†

k
→ Pk+1

17: end if
18: k = k + 1
19: Update ρB
20: end while

archive Ak (lines 5, 6, 8, 9 and 13 in Algorithm 1). After every user specified number of iterations, and as a last step

before the algorithm ends, the local refinement is triggered, and the archive and population are updated with the refined

solutions (lines 10 to 17 in Algorithm 1). The local refinement solves a single level scalarised version of problem (12).

The process proceeds alternating social and individualistic actions, with periodic local refinement, until a maximum

number of calls to the objective vector max_fun_eval is reached. The overall algorithmic complexity is dominated by

the NLP solver used in the bi-level problem and for the local refinement.

In the following both the bi-level and single level problems are explained in more detail together with the heuristics

used to generate new candidate solutions. Note that the combined use of the bi-level formulation, for global exploration,

and single level formulation for local convergence, within MACSoc is one of the distinctive features of the proposed

approach compared to previous works such as [14], [15] and [21].

A. Bi-level Global Optimisation Problem

The global search part of the algorithm solves the following two-level problem:

min
p∗

J̃(y∗, p∗)

s.t.

(y∗, p∗) = argmin(y,p)
{
δp(y, p) |C(y, p) ≥ 0

} (13)
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Problem (13) defines two different optimisation sub-problems at two different levels. The outer level handles the

objective vector J̃ and generates tentative decision vectors p. Tentative solutions are then submitted to the inner level,

whose goal is to find the state and control vectors y∗ and p∗ that satisfy constraints C and minimise an inner cost function

δp = ‖p∗ − p‖. Thus, the inner level will look for the closest feasible solution to the tentative one generated by the outer

level. The outer level then receives the solution (y∗, p∗) and proceeds by evaluating the objective functions associated to

p∗. The inner level problem is solved with a generic NLP solver (Matlab fmincon in this case).

In order to reduce the number of iterations required by the inner level to converge, the outer level stores the feasible

states y∗ at iteration k to be used as a warm start for the inner level at iteration k + 1. As illustrated in Fig. 1, the feasible

states y∗
k
are preserved from iteration k to iteration (k + 1) and the outer level only generates a new tentative vector pk+1.

The inner level at iteration (k + 1) will thus use y∗
k
and pk+1 as initial guesses for states and controls. Because of the

way pk+1 is generated, even if y∗
k
is associated to p∗

k
, it works well as an initial guess also when associated to pk+1.

When individualistic actions are applied, each agent generates one or more tentative vectors through threemechanisms

that are triggered one after the other in this order: Inertia→ Pattern Search→ Differential Evolution. If any of these

mechanisms produces an improved solution, the following ones are not triggered and the process proceeds by updating

the population and archive (line 5 and 6 of Algorithm 1). The three mechanisms operate as follows:

• Inertia is triggered by agent j only if, in the previous iteration, agent j generated an improved solution. In this

case a step with random length is taken in the direction defined by the vector p∗
k
− p∗

k−1.

• Pattern Search consists of changing one optimisation parameter at a time by a random amount in each direction

within a given neighbourhood Bj of agent j. The order by which the parameters are changed is a random

permutation of the number of decision parameters. The process is repeated until either an improvement is

registered or the maximum number of trials has been reached. As in [23], the maximum number of trials is

dynamically adjusted during the optimisation process: when the Archive is empty, the maximum number of

parameters scanned is equal to the total number of optimisaton parameters. This maximum value is decreased

linearly as the Archive fills up, until only one optimisation parameter is changed when the Archive is full. The

neighbourhood Bj is a box centred in the position of the agent in parameter space and with the edges equal to the

edges of the search space Π multiplied by the scaling parameter ρB j .

• Differential Evolution generates a sample with the simple heuristic:

ptrial, j = pj + ξ1e
( (

pj − pj1

)
+ cF

(
pj2 − pj3

) )
(14)

where pj is the current solution, pj1, pj2, pj3 are three randomly chosen solutions from the current population

Pk , ξ1 is a uniformly distributed random number in the unit interval, cF is a constant and e is a mask vector
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p*
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Fig. 1 Schematic representation of the bilevel approach acting on a single solution.

constructed as follows:

e j =


1, if ξ2 < CR

0, otherwise
(15)

where ξ2 is another uniformly distributed random number in the unit interval and CR is a constant, known as

crossover rate. In this work, cF = 0.9 and CR = 1.

If no improvement is made after trying all the three heuristics, ρB is halved, while if an improvement is made, it is

doubled until the initial value ρB = 1 is reached again.

When social actions are applied, the outer level uses the entire populations of agents to generate a tentative solution

using heuristic (14), but the parent solutions pj1, pj2, pj3 are chosen from the union of the current population Pk and the

current archive Ak .

A candidate solution (y∗, p∗), generated by the inner level, is evaluated, in the outer level, by computing the weighted

Chebychev norm:

Φi = max
i
ωi

[
J̃i(y∗, p∗) − zi

]
(16)

where ωi are the components of a weight vector in objective space and zi = minPk∪Ak
J̃i are the components of the

current utopia point, or the point whose coordinates are the minimum value of each objective function J̃i over all the

elements of the population and the archive combined. Norm (16) measures the distance, along each coordinate in

objective space, between the current objective vector J̃(y∗, p∗) and the current utopia point z, weights the different

distances via ω, and takes the worst, or maximum, weighted distance. Therefore, given the value of Φi at step k, or Φk
i ,

an improvement corresponds to Φk+1
i < Φk

i . This improvement criterion has two very important properties: first, it

allows one to reach even non-convex parts of the Pareto front, and second, if the weights are chosen appropriately, it

allows one to efficiently converge to the minimum possible values of each objective function. The generation of the

weights ω will be explained in Subsection E.

Note that, if the inner level does not converge to the required tolerance, the objective functions of the outer level are

recalculated to be the infinity norm of the constraint violation plus the maximum values of each objective functions in
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the archive and population. This creates an adaptive rejection mechanism: if none of the agents are feasible, the ones

that best satisfies the feasibility is temporarily entered in the archive with the next iterations trying to further improve

their feasibility. Once an agent finds a feasible solution, it will explore the search space through the global bi-level

approach, generating several feasible and non dominated solutions. These solutions will enter in the archive because

they will dominate many of the existing non-feasible ones, and thanks to the social actions some agents will be directly

moved onto those solutions, allowing the whole population to converge to feasible solutions in a handful of iterations.

Finally if any tentative vector for y and p is outside the boundaries of the search space Y × Π, the vector is shrunk till it

is back into the search space (for more details please refer to [23]).

B. Single Level Local Search

The local refinement solves the following scalarised problem for each agent j:

min
ε ≥0

ε

s.t .

ωi, j ϑi, j(y, p) ≤ ε for i = 1, . . . ,m

C(y, p) ≥ 0

(17)

where ω j is a vector of weights, ϑi, j is the ith component of the rescaled objective vector of the j th agent, and ε is

a slack variable. This reformulation of the problem, known as Pascoletti-Serafini scalarisation [16], is constraining

the agent’s movement, in criteria space, within the descent cone defined by the point (εdj + ζj) along the direction

dj = (1/ω1, j, . . . , 1/ωi, j, . . . , 1/ωm, j). The rescaled objective vector is defined as:

ϑ j(y, p) =
J̃i, j(y, p) − z̃i

z∗i, j − z̃i
for i = 1, . . . ,m (18)

where z∗j is equal to J̃j(y, p), (y, p) is the initial guess for the solution of (17) and z̃ = z − zA with zA the nadir of the

archive, or point whose components are the maximum values of all the components of the objective vectors in the

archive. From the normalisation one can derive the components of the vector ζ j :

ζi, j =
zi

z∗i, j − z̃i
for i = 1, . . . ,m (19)

This allows the components of ϑj(y, p) to have values of 1 at the beginning of the local search, and value 0 if the

agent converges to the target point z̃. With this normalisation the single level approach avoids biases when the objectives

have significantly different scales. The construction of the descent directions will be explained in Subsection E. It is
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important to remark that Problem (16) and (17) are equivalent and lead to the same optimal solution if the target point

for the Pascoletti-Serafini scalarisation coincides with the utopia point and the weight vectors are the same. As such, the

following theorem holds true [44]:

Theorem III.1 A point (ε, y, p) ∈ R × Y × Π is a minimal solution of (17) with z ∈ Rm, z j < miny∈Y,p∈Π Jj(y, p),

j = 1, . . . ,m, and ω ∈ int(Rm
+ ) if and only if y and p are a solution of (16).

Therefore, by combining (16) in the global search phase with (17) in the refinement phase, the algorithm realises a

smooth transition from global exploration of the Pareto set, to local convergence.

C. Archiving Strategy

MACS employs a unique archiving strategy proposed by Ricciardi and Vasile in [23] that is also applied in the context

of MACSoc. When the elements in the archive A are less than the maximum allowed cardinality of A, every new

feasible and non-dominated solution is stored in the archive. Once the maximum size is reached, a retention-rejection

policy is implemented. The retention-rejection policy is based on a minimum energy principle. New elements are added

to A only if they minimise the potential function:

E
(
J̃1, · · · , J̃NA

)
=

NA∑
i=1

NA∑
j=i+1

1
(J̃i − J̃j)T (J̃i − J̃j)

(20)

where NA is the number of elements in A. To avoid biasing the in the rejection-retention process when the objectives

have different scales, the objective values of the set of non dominated solutions are all normalised between 0 and 1.

This leads to a combinatorial problem that can be solved approximately but efficiently using the approach described by

Ricciardi and Vasile [23], and returns a uniformly spread set of points. This minimum energy criterion is also used for

the generation of uniform descent directions, as will be explained in Subsection E.

D. Generation of the Initial Feasible Population

Before the optimisation starts, MACSoc generates an initial population of agents P0 (see line 1 of Algorithm 1) with

the following four-step automatic and unsupervised procedure:

1) A first guess for the decision vectors is generated with a Latin Hypercube sampling within the prescribed

boundaries. State variables for each phase are initialised with a simple linear interpolation between initial and

final conditions.

2) For each phase, each integral equation (7) is made feasible by solving only the inner level subproblem of problem

(13) with an NLP solver.

3) Starting from the solution at step 2, for each phase, all constraints related to that phase are then included and the

resulting problem is satisfied again applying the same NLP solver to the subproblem in (13).
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4) All phases are connected together and the inter-phase constraints are satisfied applying again the same NLP

solver to the subproblem in (13).

If, at the end of the initialisation phase, an agent is associated to a solution that is not feasible within the prescribed

tolerance, that solution is still included in the initial population P0 and submitted to the subsequent optimisation cycle.

In the following, the feasibility level required to the initial population is the same required for the rest of the algorithm,

which is 10−6, so if the NLP converges, the solution generated by this approach is a fully feasible solution. By default, the

NLP solver is allowed to use a maximum number of calls to the constraint function that is equal to 10(n∗
b
+ ns + nY ). For

this procedure, an Interior Point NLP algorithm was used because it delivered a more robust and consistent convergence

to feasible solutions.

E. Definition of the descent directions and target points

The weight vectors for the bi-level global search are generated as follows: first, a simplex in objective space is

generated through simplex lattice design [45]. Then, the points of this simplex lattice are projected on the unit sphere by

dividing their position vectors by their distance to the origin. This gives a fairly uniform distribution of weight vectors

(and thus descent directions) in any Nw dimensional space. In order to generate a more uniform distribution, however,

these weight vectors are used as an initial guess for the following optimisation problem:

min E(ω1, . . . ,ωNw )

s.t .

ωT
i ωi = 1

(21)

where E(ω1, · · · ,ωNw ) is calculated using Eq. (20). This optimisation problem can be quickly solved with a standard

NLP solver. As a reference, from the initial lattice to the final optimised distribution the generation of 106 uniformly

spread weight vectors for the three objective problem in Section C takes 22 iterations of the NLP solver with an SQP

algorithm, which translates into approximately half a second in Matlab on an i7 laptop. While this approach is valid for

general m-objective problems, for two objective problems it is simpler and faster to generate uniformly angularly spaced

weight vectors. In the following Na = Nw and each agent is associated to the closest descent direction in criteria space,

at the initialisation stage, with the constraint that no two agents can have the same descent direction.

For the single level approach, the weight vectors ω j = [
√

2, . . . ,
√

2]T are allocated to all agents except to those m

agents that minimise each individual objective function. For these m agents the weight vectors areω j = [0, . . . , j, . . . , 0]T

with j = 1, ...,m. These weights are called orthogonal because correspond to the m orthogonal directions in criteria

space. If agent j associated to weight ω j does not generate any improvement after two iterations, a new random
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orthogonal weight is associated to j and problem (17) is solved with the added constraints:

J̃i ≤ zi ∀i , j (22)

The reason for the different choice of weight vectors between the bi-level and the single level formulation can be

explained as follows: the bi-level formulation explores globally the search space with a population of agents, thus there

is the need to maximise the spreading of the solutions, on the contrary, the single-level is used to improve the local

convergence of each agent in a normalised criteria space. Thus the goal of the single level is to return dominating

solutions without altering too much their spreading in criteria space.

IV. Case Studies
The approach to the solution of multi-objective optimal control problems described in previous sections is applied

to three problems of increasing complexity: a known re-entry benchmark problem with 2 objectives, a 2 phase ascent

problem with 3 objectives, and 3 phase branched ascent and abort problem with 2 objectives. The code and all the test

cases in this paper were implemented in Matlab 2017b and run on a laptop with an i7 processor under Windows 10. The

gradient based refinement was run every 10 iterations in all cases, and the NLP solver used in both the bi-level and

single level formulations employed an SQP algorithm. The maximum number of calls to the constraint function for the

NLP solver in the bi-level formulation was set equal to n∗
b
+ ns + nY , while it was increased to 10(n∗

b
+ ns + nY ) in the

single level refinement.

A. Physical models

Before describing the test cases, we present the physical models that are common to all three problems.
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1. Dynamical model

The vehicle dynamics are modelled as a 3DOF point mass moving in an Earth Centred Inertial reference frame

(adapted from [5]),

Ûr = Ûh = v sin γ (23a)

Ûθ = v

r
cos γ cos χ (23b)

Ûλ = v

r cos θ
cos γ sin χ (23c)

Ûv = T(δT ) cosα − D
m

− g sin γ (23d)

Ûγ = T(δT ) sinα + L
mv

cosσ +
( v

r
− g

v

)
cos γ (23e)

Ûχ = T(δT ) sinα + L
mv cos γ

sinσ +
v

r cos θ
cos γ sin χ sin θ (23f)

Ûm = − Ûmp(δT ) (23g)

where r = ‖r‖ is the modulus of the position vector r, h = r − RE is the altitude, λ and θ are longitude and latitude,

v = ‖v‖ is the magnitude of velocity vector, γ and χ are the flight path and heading angles, m is the mass of the vehicle,

L and D are the aerodynamic lift and drag forces, g = µE/r2 is the gravitational acceleration, T is the thrust produced

by the engine and Ûmp is the propellent mass flow rate. The control variables are the angle of attack α, bank angle σ, and

the throttling δT of the engine.

2. Atmospheric and aerodynamic models

The International Standard Atmosphere model was used to model the atmospheric temperature, pressure pa, and

density ρa as a function of the radius r assuming a spherical Earth model with a radius RE = 6371 km and constant

angular rotational velocity ωE = 7.292 118 × 10−5 rad s−1. The atmosphere is assumed to rotate with the same angular

velocity as the Earth, so the aerodynamic forces were computed using the velocity of the vehicle relative to the air with

no wind (or other disturbances),

L =
CLρaSre f v2

rel

2
(24)

D =
CDρaSre f v2

rel

2
(25)

where vrel = v − ωEr and given the aerodynamic coefficients for lift CL and drag CD , and the reference area of the

vehicle Sre f .
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3. Propulsion model

The thrust vector is assumed to be always aligned with the vehicle longitudinal body axis and is proportional to the

vacuum thrust Tvac of the engine and modulated by the throttle control δT ∈ [0, 1]. An additional term is added to

account for the losses due to the difference between the nozzle’s exit pressure and the external atmospheric pressure pa.

The resulting model is,

T = δT (Tvac − Aepa) (26)

where Ae is the nozzle exit area. The mass flow rate of the propellent Ûmp is given by

Ûmp =
δTTvac

Ispg0
(27)

where Isp is the specific impulse of the engine and g0 is the Earth gravitational acceleration at sea level.

B. Optimal Descent Trajectory

The first test case is based on a benchmark problem proposed by Betts [5] who analysed the unpowered re-entry of a

Space Shuttle-like vehicle controlled by changing the angle of attack α and bank angle σ. To be consistent with Betts

[5], the throttle was set to δT = 0 for all t, ωE = 0 and units are in the Imperial system. Furthermore, the following

models and reference values were taken from Betts [5]: the exponential model for the atmosphere, the linear model for

CL , the parabolic model for CD , the aerodynamic reference area of Sref = 2690 ft2 (249.9 m2) and the vehicle mass of

6309 sl (92 t). Bounds on the rate of change of the flight path and heading angles were imposed: | Ûγ | ≤ 0.035 rad s−1

and | Ûχ | ≤ 0.035 rad s−1s. A semi-empirical correlation for the heat flux at the nose was given as

qflux =
(
c0 + c1α + c2α

2 + c3α
3
)

c4
√
ρa (c5v)c6 ≤ 70 btu ft-2 s-1 (28)

with the coefficients c0, c1, c2, c3, c4, c5, c6 as reported in [5]. Boundary conditions, lower bounds and upper bounds for

the optimisation variables are listed in Table 1.

1. Objectives

In [5] two different single objective problems were proposed: a maximum cross-range (equivalent to maximising

the final latitude θ f since θ0 = 0) and a minimum peak heat flux max qf lux problem. Here, we propose, instead, the
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Table 1 Lower bounds, upper bounds and boundary conditions for the Optimal Descent Trajectory case

Variable [units] Lower bound Upper Bound Initial value Final value
Radius r [kft] 20900 21300 21163 20983
Latitude θ [rad N] −π/2 π/2 0 ≥ 0.2618
Longitude λ [rad E] −π π 0 Free
Velocity v [ft s−1] 1 30000 25600 2500
Flight path angle γ [rad] −π/2 π/2 -0.0175 -0.0873
Heading angle χ [rad] −π π π/2 Free
Angle of attack α [rad] −π/2 π/2 Free Free
Bank angle σ [rad] −π/2 0 Free Free

following single multi-objective optimisation problem:

min
t f ,u
[J1, J2]T =

[
−θ f , qu

]T
s.t (29)

qf lux ≤ qu

2. Numerical settings

The problem was formulated as a single time phase, with boundary conditions defined in Table 1, discretised using 6

finite elements and order 9 Bernstein polynomials for both states and controls, resulting in 121 optimisation parameters

for the outer level (120 for the control variables, and 1 for the free final time), and 484 total variables for the single level

and inner level NLP. A limit of 20000 calls to the objective vector was given to MACSoc, a population of 10 agents

was deployed in the search space and the size of the archive A was limited to 10 elements. The initialisation of the

population required approximately 1 second for 8 of the 10 agents, while for 2 agents it took approximately 3 minutes

because the NLP solver did not converge to a feasible solution in the maximum number of iterations. However, as soon

as the optimisation loop started, all solutions immediately became feasible thanks to the bi-level approach. The total

runtime was approximately 1 hr.

3. Results

Figure 2 shows the 10 Pareto optimal solutions in the archive A at the end of the optimisation process, while Figs.

3–6 show altitude, velocity, lift-to-drag ratio L/D, heat flux, angle of attack, bank angle and angular velocities for the

flight path and heading angles for each of the 10 solutions in A. Figure 2 shows that the method is able to find an even

spread of elements belonging to the Pareto front including the two single objective solutions given in [5], here labelled

as Betts A and Betts B, corresponding to Solutions 1 and 10, without any externally supplied guesses. Solution 1 has

objective values (−0.2618, 28.0016) and Solution 10 has objective values (−0.5345, 69.9997), while the corresponding
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Fig. 2 Optimal descent trajectory: Pareto optimal solutions stored in the archiveA at the end of the optimisa-
tion process and the two published single objective solutions from Betts [5].

(a) (b)

Fig. 3 Optimal descent trajectory: time-history of a) the altitude and b) the velocity for each of the 10 solutions
in the Pareto front in Fig. 2 plus the two published single objective solutions from Betts [5].

solutions from the reference are (−0.2618, 27.9982) and (−0.5345, 70) respectively. The relative difference in the

second objectives is below 10−4 and can be attributed to the different NLP solvers and settings employed, and the

presence of an iterative mesh refinement procedure in the reference solutions. In Figs. 3 and 5 the circles and squares

represent the solutions from [5] for the two individual objective functions. The figures show a very good match between

the result generated with MACSoc.

A clear trend emerges from the solutions of the multi-objective problem: the minimum peak heat flux solution is

also the shortest in time with longer re-entries imposing higher peak heat fluxes. This is due to the initial altitude skip in

the trajectory (see Fig. 3a in the first 200 s), which is more pronounced for the shorter time re-entries and causes the

velocity to decrease faster but at the price of having less energy and time to maximise the cross-range. Since the initial
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(a) (b)

Fig. 4 Optimal descent trajectory: time-history of a) the lift to drag ratio and b) the heat flux for each of the
10 solutions in the Pareto front in Fig. 2.

(a) (b)

Fig. 5 Optimal descent trajectory: time-history of a) the angle of attack and b) the bank angle for each of the
10 solutions in the Pareto front in Fig. 2 plus the two published single objective solutions from Betts [5].

conditions are fixed, the corresponding heat flux is also fixed and this gives the minimum possible peak heat flux. All

the trajectories present a similar control profile: an initial peak heat flux containment phase, with high bank and angle of

attack, followed by a maximum aerodynamic efficiency phase to maximise the cross-range when heat flux is no longer a

concern. The angle of attack during the initial descent is limited by the objective to minimise the heat flux, which is a

function of the velocity, altitude and angle of attack, while a high bank angle is used to maximise the cross-range with

no penalty to the heat flux. Angular rates for the flight path and heading angles are well below the imposed constraints

along all the trajectories.
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(a) (b)

Fig. 6 Optimal descent trajectory: time-history of a) the rate of change of the flight path angle Ûγ and b) the
heading angle Ûχ for each of the 10 solutions in the Pareto front in Fig. 2.

C. Three-objective Ascent Problem

This test case is the multi-objective, multidisciplinary design of a rocket-powered, two-stage launch vehicle optimised

for the ascent to orbit. The vehicle is air dropped from a carrier aeroplane flying at 200 m s−1 at an altitude of 10 km

eastbound along the equator, with an initial flight path angle of 10°. It has to deliver a 500 kg payload to a 650 km

altitude circular equatorial orbit. The aim of this test case is to minimise the initial gross mass of the vehicle, examining

the trade-off between the engine sizing and dry masses of each of the two stages. The vacuum thrust ratings of the two

rocket engines are set as optimisation variables, which through the mass model directly affect the dry masses of the two

vehicle stages. Similarly, the mass of propellant used in each stage also affects the dry mass of each stage by altering the

mass of the tanks. The vehicle design assumes a recoverable first stage using a winged spaceplane design, with an

expendable upper stage with no lifting surfaces. As the focus here is on the vehicle design of the mass and propulsion

systems, a simple aerodynamic model was used for both stages: for the first CL = 0, CD = 0.1 and Sre f = 73.73 m2,

while for the second CL = 0, CD = 0.01 and Sre f =1 m2.

The ascent trajectory was divided into two phases: Phase 1 is the ascent of the integrated vehicle (combined first

and second stage vehicles), and Phase 2 is the ascent of only the second stage vehicle. The initial and final conditions

and bounds for optimisation variables are listed in Table 2.
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Table 2 Lower bounds, upper bounds and boundary conditions for the Three Objective Ascent case

Variable [units] Lower bound Upper Bound Initial value (Phase 1) Final value (Phase 2)
Radius r [km] 6371 7171 6381 7021
Latitude θ [rad E] −π/2 π/2 0 Free
Longitude λ [rad N] 0 π 0 Free
Velocity v [m s−1] 465 10000 665 7535
Flight path angle γ [rad] −π/2 π/2 0.1745 0
Heading angle χ [rad] 0 π π/2 π/2
Vehicle mass m [t] 0 100 Free Free
Angle of attack α [rad] 0 0.3491 Free Free
Bank angle σ [rad] −0.1745 0.1745 Free Free
Throttle δT 0 1 Free Free
Tvac,1 [MN] 0 2 N.A. N.A.
Tvac,2 [kN] 0 200 N.A. N.A.
mp,1 [t] 0 100 N.A. N.A.
mp,2 [t] 0 1 N.A. N.A.

1. Structural mass models

For the first stage, the dry mass is a function of the engine mass meng,1 and propellent mass required for the first

phase mp,1,

mdry,1 = −l3m̃3
p,1 + l2m̃2

p,1 + l1m̃p,1 + l0 + meng,1 (30)

m̃p,1 =
mp,1 − l4

l5
(31)

For the second stage vehicle, the dry mass was assumed to be

mdry,2 =
0.1
0.9

mp,2 + meng,2 (32)

The gross vehicle masses for each phase are then given by,

m0,1 = mdry,1 + mp,1 + mdry,2 + mp,2 (33)

m0,2 = mdry,2 + mp,2 (34)

The vacuum thrust of the engines was used to estimate their structural mass based on an empirical linear relationship

of existing commercial engines,

meng = l6Tvac + l7 (35)

where l6, l7 are constants. The mass model was developed in parallel for an industrial vehicle and cannot be released
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publicly [46]. For the first stage engine, 0 ≤ Tvac ≤ 2 MN and Isp = 332 s, while for the second stage engine 0 ≤ Tvac ≤

200 kN and Isp = 352 s. Propellent masses were limited to 100 t for the first stage and 20 t for the second.

2. Objectives

The aim of the optimisation is to study the trade off between propellent efficient designs and designs that require

relatively small engines. The objective functions were to minimise the gross vehicle mass m0,1 and the two ratios

between the vacuum thrust of the stage engine, and the gross weight at the beginning of each phase. The thrust-to-weight

metric also gives an indication of the vehicle loads or induced accelerations the vehicle experiences during flight. The

higher the ratio between thrust and mass, the higher the loads imposed on the vehicle, thus one option is to minimise

loading by minimising the thrust to weight ratio. Reducing the vacuum thrust reduces the engine performance however,

which requires often longer duration trajectories and more propellant, which in turn increase the vehicle mass.

min
t f ,u,Tvac,1,Tvac,2,mp,1,mp,2

[J1, J2, J3]T =
[
m0,1,

Tvac,1
g0m0,1

,
Tvac,2
g0m0,2

]T
(36)

3. Numerical settings

The problem was discretised using 4 DFET elements of order 7 for both states and controls, and both phases,

resulting in a total of 207 optimisation variables for the outer level and 666 optimisation variables for the single level

and inner level NLP. A limit of 80000 calls to the objective vector was given to the optimiser, 106 agents were deployed

in the search space and the same maximum number of solutions were kept in the Archive. The initialisation of the

population required between 5 seconds and 5 minutes per agent. Matching conditions between the phases were imposed

on all state variables except for the mass, for which the following instantaneous drop was imposed at the stage separation:

m0,2 = m f ,1 − mdry,1 (37)

4. Results

Figure 7 shows the 106 Pareto optimal solutions in the archive at the last iteration, with an additional colorbar

indicating gross take-off mass. The shape of this 3D Pareto front resembles a smooth half cup. The figure shows the 3D

surface in the middle, and the three orthogonal projections. As can be seen, the algorithm found a very good spread set

of solutions, all of which are feasible and locally Pareto optimal up to the requested 10−6 threshold.

Figures 8 and 9 show the altitude and velocity profiles plus the flight path angle and throttle time histories of the

three extreme solutions of the Pareto front. The altitude, velocity and throttle profiles of the minimum gross mass and

minimum first stage (Tvac,1/m0,1g0) solutions are similar, while their flight path angles differ substantially during the

initial ascent: in both cases the first stage engine is working at full throttle and for a comparable time, but given the
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Fig. 7 Three-Objective Ascent: set of Pareto-optimal solutions, colorbar indicates gross mass of the vehicle.
The 3D Pareto front is in the middle, with orthographic projections shown on each coordinate plane.

relatively lower thrust engine of the minimum (Tvac,1/m0,1g0) case, the resulting flight path angle dips and becomes

negative causing the vehicle to briefly lose altitude. The minimum second stage (Tvac,2/m0,2g0) solution is instead quite

different: the first stage engine has to compensate for the relatively small second stage engine by pushing the vehicle

to a higher altitude, velocity and flight path angle at the separation point. The second stage engine has to operate at

maximum throttle for a comparatively longer length of time after the separation, and has a higher throttle setting during

the final circularisation burn in order to compensate for its lower thrust, as shown in Fig. 9b. The total flight duration is

also slightly longer than the other two.

Table 3 Design parameters for the three extreme cases of the Three-Objective Ascent case

Solution Stage
Initial Propellant Dry Vacuum Thrust ∆v

mass [t] mass [t] mass [t] thrust [kN] weight ratio [km s−1]

min(m0,1)
1 49.995 29.632 (59.27%) 20.363 (40.73%) 1682.611 3.432 2.836
2 8.765 7.063 (80.59%) 1.699 (19.38%) 126.100 1.467 5.664

min(Tvac,1/m0,1g0)
1 100.000 72.830 (72.83%) 27.170 (27.17%) 1930.137 1.968 4.115
2 11.789 9.717 (82.42%) 2.071 (17.57%) 200.000 1.730 6.003

min(Tvac,2/m0,2g0)
1 79.318 60.629 (76.44%) 18.689 (23.56%) 2000.000 2.571 4.565
2 4.390 3.234 (73.66%) 1.156 (26.34%) 15.124 0.351 4.606

Table 3 reports the vehicle design parameters for the Pareto extrema (i.e., the solutions that minimise each objective
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individually) including a breakdown of the vehicle masses with the relative percentage values with respect to the

stage’s initial mass, engine vacuum thrust, thrust to weight ratio, and resulting ∆v contribution. The solution with

minimum initial mass requires high ratios of vacuum thrust to initial weight, though the vacuum thrust of the engines

does not reach the maximum allowed values. Propellent mass is approximately 60% of the total mass of the first stage

and approximately 80% of the total of the second stage. Total ∆v is of 8.5 km s−1, with the first stage contributing

approximately for 2.8 km s−1 or 33% of the total, and the rest coming from the second stage. The ratio between the

payload and gross vehicle mass is approximately 1%.

The solution corresponding to the minimum thrust to weight ratio of the first stage requires a larger vehicle with

a substantially higher amount of propellant: its initial mass reaches the maximum allowed value for the mass of the

vehicle (see Table 2), and is double the value of the previous case. Of this gross mass, approximately 70% is propellant

for the first stage. The ratio between the payload mass and the initial mass is 0.5%. The total required ∆v is 10.1 km s−1,

with 6 km s−1 coming from the second stage. The second stage engine also has the maximum possible vacuum thrust

and consumes more propellant than the previous case leading to a high (Tvac,2/m0,2g0) at the cost of a minimised first

stage (Tvac,1/m0,1g0).

The solution corresponding to the minimum thrust to weight ratio of the second stage requires an intermediate

initial mass, approximately 60% more than the minimum initial mass case. The ratio between the payload mass and the

initial mass is 0.63%, and the required ∆v totals 9.1 km s−1, evenly spread between the two stages. This is true also

for the propellant mass, representing approximately 75% of the total of each stage and totalling twice as much as the

minimum gross take-off mass case. The first stage engine has to compensate by taking the maximum allowed value of

vacuum thrust, with the resulting thrust to weight ratio being higher than in the previous case, leading to higher induced

accelerations. However, the second stage is significantly lighter than the other solutions both in terms of dry mass and

propellent mass, and its engine has a vacuum thrust one order of magnitude smaller than the previous solutions.

D. Optimal Ascent and Abort Scenarios

The third test case is the multidisciplinary design of a spaceplane accounting for abort scenarios. Other studies

[47] have looked at optimising the abort descent for an independently determined optimal ascent trajectory. Here, the

design of the vehicle and trajectory is formulated as a multi-objective optimisation to account for the vehicle design and

performance during the ascent to orbit under nominal conditions and the descent under abort conditions, for different

abort scenarios.

The vehicle is a single stage to orbit spaceplane designed to be air-dropped from a carrier aircraft, similar in design

to the X-34. As in the three-objective ascent case, the drop point from the carrier aircraft is set at 10 km altitude

and 200 m/s. The mission is to reach a 100 km altitude, circular equatorial parking orbit. The propulsion system is

rocket-based with Tvac = 1340 kN and Isp = 450 s. An abort is designed to occur after complete engine failure at a
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(a) (b)

Fig. 8 Three-Objective Ascent: time-history of a) the altitude and b) the velocity for the three extreme solutions
of the Pareto front in Fig. 7. The + indicates the stage separation point.

(a) (b)

Fig. 9 Three-Objective Ascent: time-history of a) the flight path angle and b) the throttle for the three extreme
solutions of the Pareto front in Fig. 7. The + indicates the stage separation point.

specific time t f ail . To study the worst case, no propellent dumping was allowed.

The optimisation problem is configured to find the optimal control for the trajectories, and the optimal sizing of the

wing area, which affects the downrange performance during the abort and the dry mass of the vehicle. The initial flight

path angle is also set as an optimisable design parameter.

The timeline was divided into three phases: Phase 1 considers the normal ascent trajectory before the failure occurs,

from t0 to t f ail . At t f ail , the timeline branches into two parallel phases: in Phase 2 the engine is assumed to be working

normally and the spaceplane ascends to its target orbit, while instead in Phase 3 the engine has failed and the spaceplane
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attempts an emergency landing. The boundary conditions for the states and controls are given in Table 4.

Inter-phase constraints were introduced at the branching point to impose the continuity of states and controls between

Phase 1 and Phase 2 and continuity of the states only between Phases 1 and 3. The throttle in Phase 3 was imposed to be

zero.

Table 4 Lower bounds, upper bounds and boundary conditions for the Optimal Ascent and Abort Scenarios
case

Initial value Final value
Variable [units] Lower bound Upper Bound Phase 1 Phase 2 Phase 3
Radius r [km] 6371 6496 6381 6471 6373
Latitude θ [rad N] −π/2 π/2 0 0 0
Longitude λ [rad E] 0 π 0 Free Free
Velocity v [m s−1] 465 10000 665 7848 Free
Flight path angle γ [rad] −π/2 π/2 |γ0,1 | ≤ 0.1745 0 γ f ,3 ≥ 0.1745
Heading angle χ [rad] 0 π π/2 π/2 Free
Vehicle mass m [t] 0 100 Free Free Free
Angle of attack α [rad] 0 0.6109 Free Free Free
Bank angle σ [rad] −0.1745 0.1745 Free Free Free
Throttle δT 0 1 Free Free N.A.
Sre f [m2] 20 400 N.A. N.A. N.A.

1. Aerodynamic model

Polynomial models of the lift and drag coefficients, as functions of angle of attack α and Mach number M, were

built with a non-linear least square best fit of the aerodynamic data of the X-34 vehicle [48, 49]. The polynomial models

are in the form:

CL(α, M) = P2,1(α) + P2,2(α)W1(M) + P2,3(α)W2(M)

CD(α, M) = P3,1(α) + P3,2(α)W3(M) + P3,3(α)W3(M)
(38)

where Pi, j is the j th polynomial of degree i of α with monomial coefficients (aj,0, · · · , aj,i+1) and Wi are Weibull

distributions over Mach with parameters (ςj, κj) shifted by %j , i.e.,

Wi =
κi
ςi

(
M − %i
ςi

)κi−1
e−

(
M−%i
ςi

)κi
(39)

The upper and lower limits on the coefficient of the Weibull functions were chosen so that they had a maximum at

around M = 1, went to zero for M = 0 and for M → ∞ went to zero with first derivative equal to zero. Coefficients

for this aerodynamic model are given in Table 5 in the Appendix. Figure 10 shows the overall agreement between the

model and the data points. The R2 value of the non-linear fit is over 0.99 for both models. As no data was provided in
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the rectangular area defined by α ≥ 20° and M ≤ 3, the smooth constraint

(
α − 35

15

)8
+

(
M − 30

27

)8
− 1 ≤ 0 (40)

was imposed to exclude that area. The additional path constraint M ≤ 0.3 was imposed on all trajectories to exclude

Mach numbers for which the models extrapolated poorly. As the vehicle is not expected to fly in either of these

conditions, these constraints do not affect the optimality of the results.

(a) (b)

Fig. 10 Data points, black dots, and non-linear fit surfaces of the aerodynamic coefficients: a) CL as a function
of M and α and b) CD as a function of M and α.

2. Wing mass model

In order to account for the change in mass due to a change of wing surface, the following mass relationship from

Rohrschneider [50] was used:

mwing =
©­«Nzmland

1

1 + η Sbody

Sexp

ª®¬
0.386 (

Sexp
troot

)0.572 (
Kwingb0.572

str + Kctb0.572
body

)
(41)

where Nz is the ultimate load factor, mland is the landed mass, Sbody is the surface of the fuselage, Sexp is the surface

of the exposed part of the wing, troot is the wing thickness at the root, bstr is the structural wing span at half chord line,

bbody is the fuselage width and η, Kwing, Kct are constants depending on the wing structure. The landed mass mland is

set equal to the unknown initial mass of the vehicle m0,1, while the final mass was set equal to m f ,2 = mwing + mstr ,

where mstr is the structural mass of the vehicle plus the payload, without the wings, and has a fixed value of 10 t. Given

the options available in [50], the following values of the constants in Eq. (41) were used: Nz = 4.5 corresponding to a
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maximum loading of 3 multiplied by the safety factor of 1.5 for the ultimate load, η = 0.15 corresponding to a control

configured vehicle, Kwing = 0.214 for organic composite honeycomb wing without TPS, and Kct = 0.0267 for integral

dry carry-through of the wing beam, the lightest option available. The geometric parameters were derived from the

geometry of the X-34 [48, 49]: Sexp = 0.7283Sre f , Sbody = 0.6970Sre f , bstr = 1.486
√

Sre f , bbody = 0.2785
√

Sre f ,

troot = 0.087
√

Sre f , where Sre f is a static optimisation variable.

3. Loading Constraints

As an optimisation of the gross initial mass could result in a reduction of the wing area, the following constraint on

the wing loading was imposed:
m0,1

Sre f
≤ 700 kg/m2 (42)

together with the limit on the dynamic pressure experienced by the vehicle in all three phases:

1
2
ρav

2
rel ≤ 60 kPa (43)

In order to limit the maximum static structural stresses, the total acceleration in all three phases was constrained to be:

Ûv2 + v2
(
Ûγ2 + Ûθ2

)
≤ (3g0)2 (44)

The final flight path angle for the abort phase was required to be greater than −10°, and the final velocity of the abort

phase had to be such that M = 0.4.

4. Objectives

The optimisation criteria are the minimisation of the spaceplane initial mass and the maximisation of the downrange

in case of an abort. As the vehicle is flying along the equator, the downrange can be measured in terms of the angular

difference in longitude. The problem can thus be formulated as

min
t f ,u,Sre f ,γ0

[J1, J2]T =
[
m0,1, −(λ f ,3 − λ0,3)

]T (45)

where m0,1 indicates the mass of the vehicle at the beginning of phase 1, while λ0,3 and λ f ,3 indicate the longitude of the

vehicle at the beginning and end of phase 3 respectively.

This coupled multi-objective, multi-phase formulation allows for a robust optimisation of the ascent trajectory

because the abort scenario is included in the sizing process and the expected result is an optimal trade-off between

ascent and landing performance in the case of a failure.
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5. Numerical settings

The first analysis performed was for t f ail = 0 s. This is the worst case scenario in which the engine does not start. In

this case there are only two phases as phase 1 has 0 length. The problem was discretised with 6 elements in the first

phase and 3 in the second, using polynomials of order 7 for all states and controls. MACSoc was run for 20000 calls to

the objective vector, 10 agents and a maximum archive size of 10. The initialisation took between 10 seconds and 40

seconds for each agent, all of which managed to find a feasible solution directly at the initialisation stage. The whole

process ran for approximately 2h.

6. Results

The set of Pareto-optimal solutions is shown in Fig. 11a. The solutions are well spread and problems (17) are solved

down to an accuracy of 10−6 in both optimality and feasibility. The associated wing loading and downrange for all the

10 Pareto-optimal solutions are shown in Fig. 11b.

(a) (b)

Fig. 11 Abort at 0 seconds: a) Pareto front and b) wing loading vs downrange.

As the ascent and abort trajectories start concurrently, the main trade-off is on the vehicle design and aerodynamic

performance. The wing loading varies inversely to the downrange, as expected. This has an effect on the flight path

angle and the throttle, which in turn affect the heat flux and the total acceleration. The result is that all solutions reach

the maximum possible initial flight path angle.

High downrange solutions favour larger wing areas, which translates into a higher initial mass, due to the increased

drag and higher mass of the wings themselves. However, the increase in wing area, is such that the wing loading actually

decreases. Thus, solutions with larger wings have a lower wing loading and are able to generate longer downrange abort

trajectories.

Figure 12 shows the ascent and abort trajectory profiles over time and downrange. Figure 13a shows the time history
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(a) (b)

Fig. 12 Abort at 0 seconds: a) altitude vs time and b) altitude vs downrange for ascent (solid lines) and descent
(dashed lines).

of the total acceleration experienced by the vehicle. All ascent phases are characterised by a maximum acceleration

region in approximately the same time interval. The throttle profile, shown in Fig. 13b, differs from minimum mass

solutions to maximum downrange solutions. For minimum mass solutions (small wing area) the throttle starts at

maximum and remains there for a period of time, then progressively reduces down to zero, to comply with the limits on

the accelerations, before finally increasing again to inject the spaceplane into orbit. Maximum downrange solutions,

instead, favour a more gradual increase of the thrust and a better use of the aerodynamics.

The same analysis was then repeated for abort points at 5, 10, 15, 20, 25, 30, 35 and 40 seconds, changing the

discretisation to 3 elements for each of the 3 phases. Figure 15a shows the corresponding approximations of the Pareto

fronts. Interestingly, the different abort cases generate Pareto fronts which progressively converge to a single point at

t f ail = 30 s. For t f ail between 30 s and 40 s, only one design solution exists for increasing values of the downrange.

The increase of downrange is due to the increase of velocity and altitude while the size of the wings remain unchanged

to keep the initial mass to the minimum. Thus, if the vehicle operates properly for at least 30 seconds, it gains so much

velocity and altitude that, in the case of an abort, the downrange does not benefit from large wings. The same conclusion

can be drawn from Fig. 15b that shows the wing loading of all solutions for all abort points.

The collapse of the Pareto front to a single point implies that there exists a single design solution that minimises the

mass and simultaneously maximises the downrange. This design solution is both the most reliable and the most mass

efficient if the abort happens between 30 s and 40 s from the drop point.
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(a) (b)

Fig. 13 Abort at 0 seconds: time histories for a) total acceleration and b) engine throttling for ascent (solid
lines) and descent (dashed lines).

V. Conclusions
This paper presented a novel approach to the solution of multi-phase, multi-objective optimal control problems

applied to the ascent, re-entry and abort scenarios for different hypothetical vehicles. The approach, combining Direct

Finite Elements in Time transcription with Multi-Agent Collaborative Search, provided a robust and accurate method to

compute sets of Pareto optimal solutions. In particular the smooth transition from Chebyshev to Pascoletti-Serafini

scalarisation allows for a balanced and effective local refinement of the solutions and a global exploration of the search

space.

The approach was first validated on a known case from the literature confirming the ability to accurately identify

the optimal values for each individual objective function and to reconstruct a well spread set of locally Pareto optimal

solutions. The application to the three objective case demonstrated the ability of the algorithm to generate a well spread

Pareto front even in the case of more than two objectives. Furthermore, the solutions in the Pareto set give a unique

insight on the impact of system design choices and an optimal trade-off between system sizing and control law, allowing

the decision maker to make entirely different strategic choices depending on what is considered more important.

The abort scenario case provided an unexpected result that could not be derived from a single objective optimal

control formulation of the problem: the trade-off on the wing loading affects the ascent trajectory as the aerodynamics

of the vehicle changes due to the need to improve flight performance during descent, however this is true up to a limit

abort time of about 30 s. Beyond that point there is no trade-off and only one optimal configuration exists because a

high wing surface solution is also heavier, and the increase in gliding capabilities does not compensate for the increase

of mass and thus the lower starting velocity and altitude of the abort phase.

Future work will consider more complex scenarios and a wider range of problems. For the way the approach to the
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(a) (b)

Fig. 14 Abort at 0 seconds: time histories of a) flight path angle and b) heat flux for ascent (solid lines) and
descent (dashed lines).

solution of multi-objective optimal control problems is devised any direct transcription method is applicable and can be

paired to the MACSoc solver. Future implementations will consider these additional pairings with other transcription

methods.

Appendix
Table 5 reports the coefficients used for the aerodynamic model for the Optimal Ascent and Abort Scenarios case.

Table 5 Coefficients for the aerodynamic model

Coeff. Value Coeff. Value Coeff. Value
a1,0 -6.378335936032101e-02 ς1 1.344774373794846e+00 a5,3 -1.683702441539749e-04
a1,1 1.976923220591986e-02 ς2 1.542614382500486e+00 a6,0 8.869412111210242e+00
a1,2 2.973963976446931e-04 %1 -3.100574615791786e+01 a6,1 7.482402265848023e-01
a2,0 -3.349264465313049e+05 %2 -9.123166455265215e-02 a6,2 2.604898066115986e-02
a2,1 6.001178833841350e+05 a4,0 4.941304084167961e-02 a6,3 2.689898581212407e-04
a2,2 -2.862064269172794e+04 a4,1 -2.771101541363621e-03 κ3 1.348770573128532e+00
a3,0 4.398289382706495e-01 a4,2 4.195518696508440e-04 κ4 1.376496163657956e+00
a3,1 6.555024080116524e-02 a4,3 6.144719928912810e-06 ς3 1.004292397340135e+00
a3,2 -4.816546419307238e-04 a5,0 -8.408713897701869e+00 ς4 1.053245533842992e+00
κ1 1.088199979257513e+00 a5,1 -6.942588805953275e-01 %3 -2.715562764314760e-01
κ2 1.523372394108941e+00 a5,2 -2.602381527566895e-02 %4 -3.464086848960685e-01
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(a) (b)

Fig. 15 Comparison of Pareto optimal solutions for different abort times: a) downrange versus initial mass, b)
wing loading for each solution ID.

References
[1] Stryk, O. V., “Numerical Solution of Optimal Control Problems by Direct Collocation,” Optimal Control Calculus of Variation,

Optimal Control Theory and Numerical Methods, Birkhauser Verlag, 1993.

[2] Herman, A. L., and Conway, B. A., “Direct optimization using collocation based on high-order Gauss-Lobatto quadrature

rules,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 3, 1996, pp. 592–599. doi:10.2514/3.21662.

[3] Vasile, M., “Robust Optimization of Trajectory Intercepting Dangerous NEO,” Proceedings of the AAS/AIAA Aerodynamics

Specialist Conference, Monterey, California, Aug 2002.

[4] Vasile, M., and Bernelli-Zazzera, F., “Optimizing Low-Thrust and Gravity Assist Maneuvres to Design Interplanetary

Trajectories,” The Journal of the Astronautical Sciences, Vol. 51, No. 1, 2003. January-March 2003.

[5] Betts, J. T., Practical methods for optimal control and estimation using nonlinear programming, Advances in Design and

Control, SIAM, 2010.

[6] Vasile, M., “Finite Elements in Time: A Direct Transcription Method for Optimal Control Problems,” AIAA/AAS Astrodynamics

Specialist Conference, Guidance, Navigation, and Control and Co-located Conferences, Toronto, Canada, 2-5 Aug 2010.

doi:0.2514/6.2010-8275.

[7] Garg, D. A., Patterson, M., Hagger, W., Rao, A. V., Benson, D. A., and Huntington, G. T., “A Unified Framework for the

Numerical Solution of Optimal Control Problem Using Pseudospectral Methods,” Automatica, 2010.

[8] Ross, I. M., and Karpenko, M., “A review of pseudospectral optimal control: From theory to flight,” Annual Reviews in Control,

Vol. 36, No. 2, 2012, pp. 182–197. doi:10.1016/j.arcontrol.2012.09.002.

34



[9] Zhu, Q. J., “Hamiltonian Necessary Conditions for a Multiobjective Optimal Control Problem with Endpoint Constraints,”

SIAM Journal on Control and Optimization, Vol. 39, No. 1, 2000, p. 97–112. doi:10.1137/S0363012999350821.

[10] de Oliveira, V., Silva, G., and Rojas-Medar, M., “A class of multiobjective control problems,” Optimal Control Applications

and Methods, Vol. 30, 2009, pp. 77–86. doi:10.1002/oca.863.

[11] Kien, B., and N.C. Wong, J. Y., “Necessary conditions for multiobjective optimal control problems with free end-time,” SIAM

Journal on Control and Optimization, Vol. 47, No. 5, 2010, pp. 2251–2274. doi:10.1137/080714683.

[12] Oliveira, V. A., and Silva, G. N., “On Sufficient Optimality Conditions for Multiobjective Control Problems,” Journal of Global

Optimization, Vol. 64, No. 4, 2016, pp. 721–744. doi:10.1007/s10898-015-0351-y.

[13] Ngo, T.-N., and Hayek, N., “Necessary conditions of Pareto optimality for multiobjective optimal control problems under

constraints,” Optimization, Vol. 66, No. 2, 2017, pp. 149–177. doi:10.1080/02331934.2016.1261349.

[14] Ober-Blöbaum, S., Ringkamp, M., and zum Felde, G., “Solving multiobjective optimal control problems in space mission

design using discrete mechanics and reference point techniques,” 51st IEEE Annual Conference on Decision and Control, Maui,

Hawaii, 10-13 Dec 2012, pp. 5711–5716. doi:10.1109/CDC.2012.6426285.

[15] Kaya, C. Y., and Maurer, H., “A numerical method for nonconvex multi-objective optimal control problems,” Computational

Optimization and Applications, Vol. 57, No. 3, 2014, pp. 685–702. doi:10.1007/s10589-013-9603-2.

[16] Pascoletti, A., and Serafini, P., “Scalarizing vector optimization problems,” Journal of Optimization Theory and Applications,

Vol. 42, No. 4, 1984, pp. 499–524. doi:10.1007/BF00934564.

[17] Pagano, A., and Mooij, E., “Global launcher trajectory optimization for lunar base settlement,” AIAA/AAS Astrodynamics

Specialist Conference, Guidance, Navigation, and Control and Co-located Conferences, Toronto, Canada, 2-5 Aug 2010.

doi:10.2514/6.2010-8387.

[18] Bairstow, B., de Weck, O., and Sobieszczanski-Sobieski, J., “Multiobjective Optimization of Two-Stage Rockets for Earth-

To-Orbit Launch,” 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2006, p.

1720.

[19] Roshanian, J., Bataleblu, A. A., and Ebrahimi, M., “Robust ascent trajectory design and optimization of a typical launch

vehicle,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018.

doi:10.1177/0954406217753460.

[20] Coverstone-Carroll, V., Hartmann, J.W., andMason,W. J., “Optimalmulti-objective low-thrust spacecraft trajectories,”Computer

methods in applied mechanics and engineering, Vol. 186, No. 2, 2000, pp. 387–402. doi:10.1016/S0045-7825(99)00393-X.

[21] Englander, J. A., Vavrina, M. A., and Ghosh, A. R., “Multi-Objective Hybrid Optimal Control for Multiple-Flyby Low-Thrust

Mission Design,” AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, Virginia, 11-15 Jan 2015.

35



[22] Leary, R. H., “Global Optimization on Funneling Landscapes,” Journal of Global Optimization, Vol. 18, No. 4, 2000, pp.

367–383. doi:10.1023/A:1026500301312.

[23] Ricciardi, L. A., and Vasile, M., “Improved archiving and search strategies for Multi Agent Collaborative Search,” International

Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial

and Societal Problems (EUROGEN), Glasgow, UK, 14-16 Sep 2015.

[24] Vasile, M., and Finzi, A. E., “Direct lunar descent optimisation by finite elements in time approach,” International Journal of

Mechanics and Control, Vol. 1, No. 1, 2000.

[25] Vasile, M., and Bernelli-Zazzera, F., “Targeting a heliocentric orbit combining low-thrust propulsion and gravity assist

manoeuvres,” Operational Research in Space & Air, Vol. 79, 2003.

[26] Zuiani, F., Kawakatsu, Y., and Vasile, M., “Multi-objective optimisation of many-revolution, low-thrust orbit raising for Destiny

mission,” 23rd AAS/AIAA Space Flight Mechanics Conference, Kauai, Hawaii, 10-14 Feb 2013.

[27] Ricciardi, L. A., Vasile, M., Toso, F., and Maddock, C. A., “Multi-Objective Optimal Control of the Ascent Trajectories of

Launch Vehicles,” AIAA/AAS Astrodynamics Specialist Conference, Long Beach, California, 2016. doi:10.2514/6.2016-5669.

[28] Vasile, M., and Ricciardi, L., “A direct memetic approach to the solution of Multi-Objective Optimal Control Problems,” IEEE

Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6-9 Dec 2016. doi:10.1109/SSCI.2016.7850103.

[29] Graichen, K., and Petit, N., “Solving the Goddard problem with thrust and dynamic pressure constraints using saturation

functions,” 17th International Federation of Automatic Control (IFAC) World Congress, July 2008. doi:10.3182/20080706-5-

KR-1001.02423.

[30] Preller, D., and Smart, M. K., “Reusable Launch of Small Satellites Using Scramjets,” Journal of Spacecraft and Rockets, 2017,

pp. 1–13.

[31] Tsuchiya, T., and Mori, T., “Optimal design of two-stage-to-orbit space planes with airbreathing engines,” Journal of Spacecraft

and Rockets, Vol. 42, No. 1, 2005, pp. 90–97.

[32] Yang, S., Cui, T., Hao, X., and Yu, D., “Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss

pseudospectral method,” Aerospace Science and Technology, Vol. 67, 2017, pp. 88–95.

[33] Bayley, D. J., Hartfield, R. J., Burkhalter, J. E., and Jenkins, R. M., “Design optimization of a space launch vehicle using a

genetic algorithm,” Journal of Spacecraft and Rockets, Vol. 45, No. 4, 2008, pp. 733–740.

[34] Gath, P. F., and Calise, A. J., “Optimization of Launch Vehicle Ascent Trajectories with Path Constraints and Coast Arcs,”

Journal of Guidance, Control, and Dynamics, Vol. 24, No. 2, 2001, pp. 296–304. doi:10.2514/2.4712.

[35] Dukeman, G., “Atmospheric Ascent Guidance for Rocket-Powered Launch Vehicles,” AIAA Guidance, Navigation, and Control

Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences, Monterey, USA, 5-8 August 2002.

doi:10.2514/6.2002-4559.

36



[36] Lu, P., Sun, H., and Tsai, B., “Closed-Loop Endoatmospheric Ascent Guidance,” Journal of Guidance, Control, and Dynamics,

Vol. 26, No. 2, 2003, pp. 283–294. doi:10.2514/2.5045.

[37] Calise, A. J., and Brandt, N., “Generation of Launch Vehicle Abort Trajectories Using a Hybrid Optimization Method,” Journal

of Guidance, Control, and Dynamics, Vol. 27, No. 6, 2004, pp. 930–937. doi:10.2514/1.7989.

[38] Dukeman, G., and Hill, A., “Rapid Trajectory Optimization for the ARES I Launch Vehicle,” AIAA Guidance, Navigation,

and Control Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences, Honolulu, USA, 18-21

August 2008. doi:10.2514/6.2008-6288.

[39] Lu, P., and Pan, B., “Highly Constrained Optimal Launch Ascent Guidance,” Journal of Guidance, Control, and Dynamics,

Vol. 33, No. 2, 2010, pp. 404–414. doi:10.2514/1.45632.

[40] Hodges, D. H., and Bless, R. R., “Weak Hamiltonian finite element method for optimal control problems,” Journal of Guidance,

Control, and Dynamics, Vol. 14, No. 1, 1991, pp. 148–156. doi:10.2514/3.20616.

[41] Bottasso, C. L., and Ragazzi, A., “Finite element and Runge-Kutta methods for boundary-value and optimal control problems,”

Journal of Guidance, Control, and Dynamics, Vol. 23, No. 4, 2000, pp. 749–751. doi:10.2514/2.4595.

[42] Hillermeier, C., Nonlinear Multiobjective Optimization, International Series of Numerical Mathematics, Birkhäuser Basel,

2001. doi:10.1007/978-3-0348-8280-4.

[43] Ricciardi, L. A., and Vasile, M., “Global Solution of Multi-objective Optimal Control Problems with Multi Agent Collaborative

Search and Direct Finite Elements Transcription,” IEEE World Congress on Computational Intelligence, IEEE Congress on

Evolutionary Computation, Vancouver, Canada, 24-29 Jul 2016. doi:10.1109/CEC.2016.7743882.

[44] Eichfelder, G., Adaptive Scalarization Methods in Multiobjective Optimization, Springer-Verlag Berlin Heidelberg, 2008.

doi:10.1007/978-3-540-79159-1.

[45] Chasalow, S. D., and Brand, R. J., “Algorithm AS 299: Generation of Simplex Lattice Points,” Journal of the Royal Statistical

Society. Series C (Applied Statistics), Vol. 44, No. 4, 1995, pp. 534–545. doi:10.2307/2986144.

[46] Maddock, C., Toso, F., Ricciardi, L., Mogavero, A., Lo, K. H., Rengarajan, S., Kontis, K., Milne, A., Evans, D., West, M.,

et al., “Vehicle and mission design of a future small payload launcher,” 21st AIAA International Space Planes and Hypersonics

Technologies Conference, Xiamen, China, 6-9 Mar 2017. doi:10.2514/6.2017-2224.

[47] Toso, F., and Maddock, C., “Return and abort trajectory optimisation for reusable launch vehicles,” 21st AIAA/IAA International

Space Planes and Hypersonic Systems and Technologies Conferences, Xiamen, China, 6-9 Mar 2017. doi:10.2514/6.2017-2250.

[48] Pamadi, B. N., and Brauckmann, G. J., “Aerodynamic characteristics and development of the aerodynamic database of the X-34

reusable launch vehicle,” International Symposium on Atmospheric Reentry Vehicles and Systems, Arcachon, France, 16-18

Mar 1999.

37



[49] Brauckmann, G. J., “X-34 Vehicle Aerodynamic Characteristics,” Journal of Spacecraft and Rockets, Vol. 36, No. 2, 1999, pp.

229–239. doi:10.2514/2.3453.

[50] Rohrschneider, R., “Development of a mass estimating relationship database for launch vehicle conceptual design,” Tech. rep.,

School of Aerospace Engineering, Georgia Institute of Technology, 2002.

38


	Introduction
	Direct Transcription of Multi-Objective Optimal Control Problems
	Direct Transcription with Finite Elements in Time

	Solution of the Transcribed Problem
	Bi-level Global Optimisation Problem
	Single Level Local Search
	Archiving Strategy
	Generation of the Initial Feasible Population
	Definition of the descent directions and target points

	Case Studies
	Physical models
	Dynamical model
	Atmospheric and aerodynamic models
	Propulsion model

	Optimal Descent Trajectory
	Objectives
	Numerical settings
	Results

	Three-objective Ascent Problem
	Structural mass models
	Objectives
	Numerical settings
	Results

	Optimal Ascent and Abort Scenarios
	Aerodynamic model
	Wing mass model
	Loading Constraints
	Objectives
	Numerical settings
	Results


	Conclusions

