Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Implications of phosphor coating on the thermal characteristics of phosphor-converted white LEDs

Law, T. K. and Lim, Fannon and Li, Yun and Yeong, K. K. George and Sng, G. K. Ernest and Uvarajan, M. V. and Teo, J. W. Ronnie (2016) Implications of phosphor coating on the thermal characteristics of phosphor-converted white LEDs. IEEE Transactions on Device and Materials Reliability, 16 (4). pp. 576-582. ISSN 1530-4388

Text (Law-etal-IEEE-TDMR-2016-Implications-of-phosphor-coating-on-the-thermal-characteristics-of-phosphor-converted-white-LEDs)
Accepted Author Manuscript

Download (874kB) | Preview


The phosphor layer in phosphor-converted white light-emitting diodes (pcLEDs) affects their optical and thermal performances. This paper reports the effects of phosphor thickness and particle concentration on the optical efficiency and temperature rise on conformal phosphor-coated LED package. It is observed that a thicker phosphor layer and a higher phosphor particle concentration will increase the amount of backscattering and back reflection of light from the phosphor layer. These light extraction losses not only reduce the optical efficiency of the light output but also cause heat accumulation in the phosphor layer, leading to higher LED junction temperature. At 2700-K correlated color temperature (CCT), the temperature rise is observed to increase by as much as 2.6 times as compared with its blue LED package. However, the self-heating effect can be reduced through its die-bonding configuration. Structure function-based thermal evaluation shows heat accumulation in the phosphor layer and that flip-chip bonding can dissipate heat generated in the GaN LED and phosphor layer effectively. Evidence in this study demonstrates that optical efficiency and thermal resistance of pcLEDs are dependent on the CCT ratings.