Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

A novel use of the hybrid energy storage system for primary frequency control in a microgrid

Li, Jianwei and Yang, Qingqing and Yao, Pengfei and Sun, Qixing and Zhang, Zhenyu and Zhang, Min and Yuan, Weijia (2016) A novel use of the hybrid energy storage system for primary frequency control in a microgrid. Energy Procedia, 103. pp. 82-87. ISSN 1876-6102

[img]
Preview
Text (Li-etal-EP-2016-A-novel-use-of-the-hybrid-energy-storage-system-for-primary-frequency-control-in-a-microgrid)
Li_etal_EP_2016_A_novel_use_of_the_hybrid_energy_storage_system_for_primary_frequency_control_in_a_microgrid.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (750kB) | Preview

Abstract

High penetration of renewable energycauses fluctuationsof power flow and results in system frequency fluctuation, which significantlyaffects the power system operation. The situation in microgrid (MG) is worse because of the low inertia and small time constant of the system. This paper present a novel use ofthesuperconducting magnetic energy storage (SMES) and battery hybrid energy storage system with the function of frequency control in the MG.A hybrid power management strategy for the SMES and the battery is used to achieve, firstly, a faster primary frequencycontroland secondly, an improvement of battery service time.