Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene : 7. interface strength and fibre strain in injection moulded long fibre PP at high fibre content

Thomason, J.L. (2007) The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene : 7. interface strength and fibre strain in injection moulded long fibre PP at high fibre content. Composites Part A: Applied Science and Manufacturing, 38 (1). pp. 210-216. ISSN 1359-835X

[img]
Preview
Text (strathprints006435)
strathprints006435.pdf
Accepted Author Manuscript

Download (324kB)| Preview

    Abstract

    The mechanical performance of injection moulded long glass fibre reinforced polypropylene with a glass fibre content in the range 0-73% by weight has been investigated. The composite modulus exhibited a linear dependence on fibre content over the full range of the study. Composite strength and impact resistance exhibited a maximum in performance in the 40-50% by weight reinforcement content range. The residual fibre length, average fibre orientation, interfacial shear strength, and fibre strain at composite failure in the samples have been characterised. These parameters were also found to be fibre concentration dependent. The interfacial shear strength was found to be influenced by both physical and chemical contributions. Theoretical calculations of the composite strength using the measured micromechanical parameters enabled the observed maximum in tensile strength to be well modelled.